
electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com
p

lec
s U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

STM32 Target Support User Manual Version 1.2

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zürich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

STM32 Target Support User Manual

© 2022 by Plexim GmbH

The product described in this manual is furnished under a license agreement.
The software may be used or copied only under the terms of the license agree-
ment. No part of this manual may be photocopied or reproduced in any form
without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii

1 Quick Start 3

Requirements . 3

Installing the Target Support Package . 3

Build and Deploy Generated Code . 4

Program the MCU from PLECS . 4

Program the MCU from STM32CubeIDE 5

Start the External Mode . 7

2 Target Support Architecture 9

Overview . 9

The Embedded Code Generation Workflow 9

Control Task Execution . 10

Control Task Accuracy and PWM Frequency Tolerance 11

Explicit and Implicit Trigger Definitions 12

The Code Generation Project . 20

3 STM32 Coder Options 23

Contents

4 STM32 Target Support Library Component Reference 27
Analog In . 28

Analog In (Triggered) . 30

Base Task Load . 32

CAN Port . 33

CAN Receive . 36

CAN Transmit . 38

Control Task Trigger . 40

DAC . 41

Digital In . 42

Digital Out . 43

Override Probe . 44

Peak Current Controller . 45

Powerstage Protection . 49

Pulse Capture . 51

PWM . 54

Quadrature Encoder Counter (QEP) . 58

Read Probe . 60

SinCos . 61

SPI Master . 62

SPI Slave . 67

Timer . 70

1

Contents

2

1

Quick Start

Requirements

The PLECS STM32 Target Support Package currently supports the
STM32G431 and STM32G474 microprocessors from the STM32G4x tar-
get family, and the STM32F334 and STM32F303 microprocessors from the
STM32F3x family.

In order to use the PLECS STM32 Target Support Package you will
need:

• a host computer (with Microsoft Windows or Mac OS X)
• PLECS Blockset or Standalone 4.6.1 or newer
• PLECS Coder

If you have not done so yet, please download and install the latest PLECS re-
lease on your host computer.

Installing the Target Support Package

Download the appropriate ZIP archive or disk image from the web page
https://www.plexim.com/download/tsp_stm32, extract it and move the stm32
folder to the PLECS Coder target support packages path e.g. to HOME/Docu-
ments/PLECS/CoderTargets. In PLECS, choose Preferences... from the File
drop-down menu (PLECS menu on Mac OS X) to open the PLECS Prefer-
ences dialog.

Navigate to the Coder tab and click on the Change button to select the
HOME/Documents/PLECS/CoderTargets folder. The targets included as part
of the STM32 Target Support Package should now be listed under Installed

https://www.plexim.com/download/tsp_stm32/

1 Quick Start

targets. You will also see these targets available in the Coder + Coder op-
tions... window in the drop-down menu on the Target tab.

Another folder labeled projects is included in the ZIP archive. The contents
of this folder is required only when the PLECS Coder is configured to generate
code into STM32CubeIDE projects. The projects/stm32xx.zip files contain
Cube IDE projects that are used in conjunction with the embedded code gener-
ated from PLECS.

A set of basic demos is also included with the STM32 Target Support Package.

Build and Deploy Generated Code

There are two primary methods for building and deploying generated embed-
ded code onto a STM32 MCU.

1 Build and program the MCU from PLECS You can directly program the
target device from the PLECS application. This approach does not require
any external tools, although, optionally, the Segger J-Link package can be
used in this workflow. Clicking Build in the Coder Options dialog gener-
ates model and supporting hardware configuration code, builds the applica-
tion using the ARM GCC tools, and then flashes the target via Open OCD
(or J-Link).

2 Build and program the MCU from the STM32CubeIDE In this ap-
proach the PLECS Coder generates code for the specified target into a tem-
plate Cube IDE project. The Cube IDE is then used to build the project and
flash the target device. The advantage of this method is that the generated
code can easily be inspected. Further, the developer has access to debugging
tools.

If the required software is installed on your PC you can easily switch between
the two methods by checking or unchecking the Generate code only parame-
ter in the Coder options... + Target + General menu.

Program the MCU from PLECS

PLECS can automatically program the target MCU after it finishes generat-
ing and building code. Programming occurs over the GNU debug protocol and
requires a GDB server.

Two options exist:

4

Build and Deploy Generated Code

1 Open OCD The STM32 Target Support Package includes the Open On-Chip
Debugger package and GDB server, supporting the ST-LINK debug link out
of the box (no external tools needed).

2 Segger J-Link Segger debug probes offer superior throughput and are also
supported by the STM32 Target Support Package – see below on how to in-
stall the Segger tools.

Note that the debug link can also be used in PLECS External Mode to com-
municate with the target while it is executing the generated code. It is in Ex-
ternal Mode that the high throughput of J-Link is most noticeable.

Configuring Segger J-Link Tools

The Segger J-Link tools must be downloaded and installed separately.

To configure the PLECS Coder to use the Segger tools, select Preferences...
from the File drop-down menu (PLECS menu on Mac OS X) to open the
PLECS Preferences dialog. Click the Coder tab to see the installed targets.
Click the icon in the Family column next to the STM32 entry and enter
the path to the J-Link installation (e.g. /Applications/SEGGER/JLink).

Deploy code to STM32 target from PLECS

To deploy code to a STM32 target from PLECS, navigate to the PLECS Coder
Options + Target window, select the target MCU. Uncheck the Generate
code only parameter, then choose the desired Programming interface from
the dropdown menu. The default programming interface is Open OCD.

Program the MCU from STM32CubeIDE

Configure STM32CubeIDE

Download and install the latest version of STM32CubeIDE from the STM
website. This is available at the following location:

https://www.st.com/en/development-tools/stm32cubeide.html

After installing STM32CubeIDE, import the appropriate template project
from the STM32 Target Support Package. Open STM32CubeIDE and click the
File drop-down menu and then select Import.... From General + Existing

5

https://sourceforge.net/projects/openocd/
https://sourceforge.net/projects/openocd/
https://www.st.com/en/development-tools/stm32cubeide.html

1 Quick Start

Figure 1.1: Configuring the target support package and external tool paths

Projects into Workspace, choose the zip archive in the projects folder that
corresponds to the desired target. You will notice a new project created in your
workspace.

Navigate to the CubeIDE project build settings in the Project + Properties
drop-down menu. Select Settings under C/C++ Build and open the Build
Steps tab. Modify the post-build steps configuration depending on your oper-
ating system as shown below.

Windows X Post-Build Step command:

"${workspace_loc:/${ProjName}/cg/buildsteps.bat}" 1 "${BuildAr-

6

Start the External Mode

tifactFileBaseName}"

Mac OS X Post-Build Step command:

source "${workspace_loc:/${ProjName}/cg/buildsteps.sh}"
"${BuildArtifactFileBaseName}"

Apply the changes and close the dialog window.

Deploy code from STM32CubeIDE

Return to the PLECS application, navigate to the Coder + Coder Options...
window and select the Target tab. Check the Generate code only parame-
ter checkbox. Enter the location of the ${workspace_loc}/cube_g4xx/cg or
${workspace_loc}/cube_f3xx/cg folder from the STM32CubeIDE project
into the STM32CubeIDE project directory field and click Build. Note
that {workspace_loc} refers to the location of the imported project in the
STM32CubeIDE workspace. You will notice several new files created in the
${workspace_loc}/cube_g4xx/cg or ${workspace_loc}/cube_f3xx/cg direc-
tory. Then, proceed to build and debug your project as you would a normal
STM32CubeIDE project. The project will not compile without first generating
code from PLECS.

Note that it is necessary to manually delete the contents of the
${workspace_loc}/cube_g4xx/cg or ${workspace_loc}/cube_f3xx/cg
folder when generating code for a new subsystem of a different name, as the
STM32CubeIDE builder will build all files in this folder, including old files.

Start the External Mode

Once the generated code is running on the embedded target, the user can en-
ter the External Mode to update Scopes in the PLECS application with real-
time waveforms and change certain simulation parameters.

External mode can be configured to run over JTAG or Serial. This choice must
be configured from the Coder + Coder options...+Target + External Mode
window prior to building the project.

To establish a communication link over JTAG with your target, follow the in-
structions provided below:

7

1 Quick Start

• Open the Coder options... + External Mode tab and then select the
icon next to the Target device field.

• Select Serial over GDB, configure the device name to 127.0.0.1 and then
click the OK button to proceed.

• Click the Connect button and if the connection is successful you will see
the trigger controls activate.

• Set the Number of samples parameter to e.g. 1000 and click on the Acti-
vate autotriggering button.

To establish a communication link over Serial with your target, first config-
ure the proper USART channels from the Coder + Coder options...+Target
+ External Mode window. Then, Scan for the appropriate Target device
and proceed to Connect to the target as described in the instructions above.

You will now see real-time data from the MCU in the PLECS Scopes. You can
synchronize the data capture to a specific trigger event. To do so, change the
Trigger channel selection from Off to the desired signal. The Scope will now
show a small square indicating the trigger level and delay. If the level or de-
lay are outside the current axes limits, a small triangle will be shown instead.
Drag the trigger icon to change the trigger level; drag it with the left mouse-
button pressed to change the trigger delay. Both parameters can also be set in
the External Mode dialog.

Note While a trigger channel is active, the Scope signals are only updated
when a trigger event is detected.

While the PLECS model is connected via the External Mode, the model is
locked against modifications. To disconnect from the MCU and other External
Mode connections, click on the Disconnect button or close the Coder Options
dialog.

Parameter Inlining

Certain values on the target device can be changed in real-time, when con-
nected to the target device via the External Mode, if the component is added
to the "Exceptions" list found in the Parameter Inlining tab of the Coder
options... window, prior to building the model. Changes in the parameters
will be reflected in the Scope traces once they take effect.

8

2

Target Support Architecture

Overview

As a separately licensed feature, the PLECS Coder can generate C code from
a simulation model to facilitate embedded code generation. Plexim provides
and maintains target support packages (TSPs) for specific processor families.
A TSP enables the PLECS Coder to generate code that is specific to a partic-
ular hardware target such as the STM32 family of MCUs or the PLECS RT
Box. With the PLECS Coder and a TSP, embedded control code can be gen-
erated, compiled, and uploaded to the target device directly from the PLECS
environment with minimal effort. Furthermore, the embedded control logic
can be tested extensively inside the PLECS simulation environment prior to
real-time deployment.

The Embedded Code Generation Workflow

The embedded workflow is designed for you to easily transition from a PLECS
model to an embedded code generation project without having to build and
maintain separate models. A typical embedded code generation workflow con-
sists of the following steps:

1 Design and simulate a controller and plant in PLECS. The controller repre-
sents the application that will run on the embedded target. The plant rep-
resents the hardware connected to the embedded target including the power
stage and other physical systems.

2 Add components from the target support library to configure the embedded
peripheral devices. Place the controller and peripheral models into a sub-
system representing the embedded target.

2 Target Support Architecture

3 Run an offline simulation. All peripheral components in the target support
library have behavioral offline models to facilitate the transition from simu-
lation to real-time deployment.

4 Select a discretization step size and nominal control task execution fre-
quency. When generating C code, the PLECS Coder will use the discretiza-
tion step size to automatically transform all continuous states in the con-
troller to the discrete state-space domain using the Forward Euler method.
The control task execution frequency is based on the discretization step size
and specifies the nominal execution rate of the digital control loop.

5 Build the embedded project and flash the MCU using PLECS or the
STM32CubeIDE.

6 Connect to the MCU using the External Mode to test the embedded control
code executing on the embedded target.

Control Task Execution

Embedded applications for power electronics typically sense signals from the
power converter, process the inputs using digital control laws, and output
signals to actuation devices. The STM32 TSP library includes components to
model and program the MCU peripherals for sensing and actuation. The con-
trol laws are implemented using standard PLECS library components.

Time synchronization of signal measurement via the analog-to-digital con-
verter (ADC), control logic execution, and actuation via PWM outputs is crit-
ical in the digital power electronic control loop. The STM32 TSP provides the
flexibility to configure the ADC and control loop interrupts through the ADC
trigger and task trigger signals.

Note that there are two types of Analog In (ADC) blocks in the STM32 target
library: continuous Analog In and triggered Analog In. As the name suggests,
continuous Analog In block converts the selected inputs continuously. Whereas
the triggered block converts the selected inputs once per trigger. The following
sections use the triggered Analog In block.

ADC triggers start injected ADC conversions. The ADC start-of-conversion is
driven by an event generated from a timer based component. All injected con-
versions associated with an ADC unit are converted sequentially when the
ADC trigger is activated. The order of conversion is based on the order of the
analog input channel vector. Note that regular non-triggered ADC conversions
are also available.

10

Control Task Execution

Task triggers are generated at the end of injected conversions, PWM counter
underflow and overflow events, or the Timer block events. The task trigger
that connects to the Control Task Trigger component will trigger one execu-
tion of the digital control loop at the nominal base sample rate.

Additionally, the PLECS Coder and the STM32 TSP allow the user to gen-
erate multi-tasking code for the STM32 family of MCUs. For further infor-
mation, refer to the "Code Generation" section in the PLECS User Manual.
Multi-tasking code unlocks processing power for controls regulating multi-
ple system outputs with dynamics on a range of time-scales. Using the Task
library component, 15 additional tasks that execute at different rates (not
including the base task) can be specified, preserving processor time for the
fastest, highest priority control task (base task) in the application.

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks
must be an integer multiple of the base sample time.

In a multi-tasking mode, the Control Task Trigger component triggers the
base task associated with the nominal base sample time.

Note In the following sections, unless specified otherwise, control task and
base task can be considered synonymous.

Control Task Accuracy and PWM Frequency Tolerance

The MCU system clock frequency, SYSCLK, fundamentally limits the time
accuracy of the embedded target. SYSCLK is defined in the Target + Gen-
eral tab of the Coder + Coder Options window. The Timer and PWM carrier
generation clocks are derived from an integer number of counts of SYSCLK.
Therefore the time accuracy of task triggers and PWM carriers are also lim-
ited.

Consider the case where there is a desired PWM carrier frequency of 150 kHz
and the SYSCLK is set to 100 MHz. The closest achievable PWM carrier
frequency is 150.15 kHz. Note that if the SYSCLK setting was changed to
90 MHz, then the target PWM frequency of 150 kHz could be achieved exactly.

11

https://www.plexim.com/sites/default/files/plecsmanual.pdf

2 Target Support Architecture

In cases where the PWM carrier frequency or ADC and task trigger periods
cannot be achieved exactly, the default behavior is to generate an error mes-
sage displaying the desired frequency or step size and the closest achievable
value. Adjusting the Frequency tolerance parameter overrides this behavior
and configures the PLECS Coder to automatically select the closest achievable
frequency. The Frequency tolerance can be configured in the mask param-
eters of the Timer, PWM, and Peak Current Controller (PCC) target support
library blocks.

The discretization step size configured in the General tab of the Coder +
Coder Options will also generate an error if the exact step size cannot be
achieved. This impacts the nominal period of the task trigger and introduces
a numerical inaccuracy since C code derived from the model executes at a dif-
ferent rate than was assumed during model discretization. The Frequency
tolerance parameter relating to model and control task discretization can be
adjusted in the General tab of the Coder + Coder Options + Target win-
dow.

Explicit and Implicit Trigger Definitions

The interrupt sequence of the embedded application can be defined explicitly
by connecting trigger signals, or implicitly where the interrupt sequence is au-
tomatically determined based on the components included in the schematic.
Implicitly defined control loops will not have a Control Task Trigger compo-
nent included in the schematic and all ADC trigger sources must be automat-
ically determined. Several possible explicit and implicit trigger sequences are
discussed below.

Note Explicitly defined trigger systems require that the Control Task Trig-
ger’s nominal base sample time parameter agrees with period of the task trig-
ger input signal.

12

Control Task Execution

Control task triggered by Timer

In a basic project without an ADC or PWM component from the target support
library, the task trigger must be generated by a generic Timer. The schematic
below shows a simple application where a digital output is toggled at a fixed
rate.

The explicit representation of the control task execution includes a Timer
component that generates the input signal for the Control Task Trigger. The
nominal base sample time of the Control Task Trigger must agree with the
Timer task frequency. In the implicit representation the PLECS Coder will
configure the Timer and Control Task Trigger automatically based on the Dis-
cretization step size parameter set in the Coder + Coder Options + Gen-
eral menu.

z-1

NOT

LED
Port: B
Pin: [7]

Digital
Out

ST

Explicit Implicit

z-1

NOT

LED
Port: B
Pin: [7]

Digital
Out

ST

Timer
Freq: Fdisc

Task

ADC

Timer

ST

Control Task
Trigger

Figure 2.1: Basic model with control task triggered by Timer

Control task triggered by PWM

Control task execution can be synchronized with the PWM carrier, and the
repetition counter period determines how many events need to occur before
a trigger is generated. When the carrier type is symmetrical, for even values
of repetition counter period, the interrupts will occur at the carrier underflow
or overflow events. Underflow and overflow events correspond to PWM car-
rier reaching the respective carrier minimum or carrier maximum values. The
task trigger is configured in the Trigger tab of the PWM component.

In the explicit representation, the PWM task trigger output is connected to
the Control Task Trigger component, such that execution of the digital control
loop is synchronized with the PWM carrier. If the schematic does not include

13

2 Target Support Architecture

a Control Task Trigger or an ADC component, then the PLECS Coder will im-
plicitly select the most appropriate source for the task trigger. First, the PWM
generator that can achieve the control task frequency with the highest preci-
sion is chosen, starting from the lowest PWM number. If the control task fre-
quency cannot be achieved exactly using a PWM carrier, then the implicit trig-
ger logic will determine if more accurate task execution can be achieved with
the Timer. The most accurate source for the control task interrupt is then se-
lected.

The task trigger will default to triggering on underflow and overflow when the
task trigger is set to disabled in the PWM Trigger tab and the trigger is im-
plicitly defined.

Explicit Implicit

z-1

NOT

0.5

LED
Port: B
Pin: [7]

Digital
Out

ST

PWM
CarrierFreq: Fdisc
RepCtrPeriod: 2

RepCtrEvent: Underflow

Task

PWM

ST

Control Task
Trigger

z-1

NOT

0.5

LED
Port: B
Pin: [7]

Digital
Out

ST

PWM
CarrierFreq: Fdisc

PWM

ST

Figure 2.2: Basic model with control task triggered by PWM

14

Control Task Execution

Control task triggered by Timer via ADC

If the schematic includes an ADC but no PWM generators, then the ADC
start-of-conversion must be triggered by the Timer. In this case, the control
task can be triggered by the ADC end-of-conversion or the Timer. When the
ADC end-of-conversion is the source of the Control Task Trigger input, as
shown in Figure 2.3, then the control loop interrupt will occur after all ADC
results registers are updated with the latest measurement values.

The implicit implementation automatically configures the Timer to periodi-
cally trigger the ADC start-of-conversion. The ADC trigger period is set by the
Discretization step size parameter found in the Coder + Coder Options +
General menu. The ADC unit with the greatest number of channels will trig-
ger the control task.

Explicit Implicit

z-1

NOT

0.0000

LED
Port: B
Pin: [7]

Digital
Out

ST

Analog In
(Triggered)

Task

ADC

ST

z-1

NOT

0.0000

LED
Port: B
Pin: [7]

Digital
Out

ST

Analog In
(Triggered)

Task

ADC

ST

Control Task
Trigger

Timer
Freq: Fdisc

Task

ADC

Timer

ST

Figure 2.3: Basic model with control task triggered by ADC

Control task triggered by PWM via ADC

Figure 2.4 shows the explicit and implicit implementations of the control task
being triggered by the ADC via the PWM. The sequence of events begins when
the PWM carrier reaches an underflow or overflow triggering the start-of-
conversion signal for the first ADC channel. The ADC channels are sampled
and updated sequentially until the result register of the final ADC channel is
updated. Once all ADC results are available, the ADC end-of-conversion inter-
rupt triggers the control task. This arrangement synchronizes the ADC start-
of-conversion with the PWM actuation and ensures the ADC results registers
are updated prior to executing the control loop.

15

2 Target Support Architecture

When both ADC and PWM components are included in any schematic, the
PLECS Coder will implicitly select the the PWM generator with the highest
control task accuracy as the ADC trigger. If the PWM generators cannot trig-
ger the ADC at the exact target frequency, then the Timer will be used if it is
more accurate. The control task will always be triggered by the ADC end-of-
conversion signal.

Explicit Implicit

z-1

NOT

0.0000

Controller

LED
Port: B
Pin: [7]

Digital
Out

ST

PWM
CarrierFreq: Fdisc

PWM

ST

Analog In
(Triggered)

Task

ADC

ST

z-1

NOT

0.0000

Controller
Analog In

(Triggered)

Task

ADC

ST

Control Task
Trigger

PWM
CarrierFreq: Fdisc
RepCtrPeriod: 2

RepCtrEvent: Underflow

ADC

PWM

ST

LED
Port: B
Pin: [7]

Digital
Out

ST

Figure 2.4: Basic model with control task triggered by PWM via ADC

16

Control Task Execution

Advanced explicit configurations

The control task interrupt can execute at integer multiples of the PWM car-
rier frequency, and for a symmetric carrier the control task can be triggered at
twice the PWM carrier frequency.

Figure 2.5 shows a case where the discretization frequency is Fdisc, the sym-
metric PWM carrier period is Tsw = 2/Fdisc Hz, and the Control Task Trigger
interrupt period is TCtrlTask = 1/Fdisc. The control task is triggered twice per
PWM period. Figure 2.6 shows the corresponding PWM carrier, task trigger,
and PWM outputs.

z-1

NOT

LED
Port:	B
Pin:	[7]

Digital
Out

ST
0.5

PWM
CarrierFreq:	Fdisc/2
RepCtrPeriod:	1

Task
PWM

ST

Control	Task
Trigger

Figure 2.5: PWM frequency set to half the control task frequency

m

Overflow

Underflow

TSW

Task Trigger

TCtrlTask

PWM output
Complementary PWM

(Rep. period = 1)

Figure 2.6: PWM carrier and task interrupts for PWM frequency set to half the
control task frequency

Figure 2.7 shows a case where the discretization frequency is Fdisc, the sym-
metric PWM carrier period is Tsw = 1/(2 · Fdisc)Hz, and the Control Task
Trigger interrupt is generated at TCtrlTask = 1/Fdisc. Figure 2.8 shows the
corresponding PWM carrier, task trigger, and PWM outputs.

The STM32 TSP by default will only update the PWM duty cycle register on
PWM underflow and overflow events to prevent data corruption. In Figure 2.8

17

2 Target Support Architecture

note the delay between the task trigger and the instant when the duty cycle,
m, is updated in the PWM module. The task trigger initiates the control task
computation, but the modulation index is updated on the next overflow or un-
derflow event after the entire control task has been completed. When the con-
trol task is triggered by the ADC end-of-conversion, then the modulation index
will update on the next overflow or underflow event after all ADC channels
are converted and the control task is completed.

z-1

NOT
0.5

LED
Port:	B
Pin:	[7]

Digital
Out

ST

PWM
CarrierFreq:	Fdisc*2
RepCtrPeriod:	4

RepCtrEvent:	Underflow

Task
PWM

ST

Control	Task
Trigger

Figure 2.7: Schematic of PWM frequency set to twice the control task fre-
quency

m

Overflow

Underflow

TSW

Task Trigger

TCtrlTask

PWM output
Complementary PWM

(Rep. period = 4)

Figure 2.8: PWM carrier and task interrupts for PWM frequency set to twice
the control task frequency

Each ADC can receive independent start-of-conversion triggers from different
PWM generators for phase-shifted sampling. Figure 2.9 shows the case where
the ADC1 component is triggered on the carrier overflow and ADC2 is trig-
gered on carrier underflow from two different PWM modules with a common
carrier frequency.
After all channels associated with ADC2 are converted the control task is exe-
cuted with updated measurements from ADC1 and ADC2. On the next carrier
overflow the PWM duty cycle register is updated.

18

Control Task Execution

z-1

NOT

0.0000

Controller1

0.0000

Controller2

Analog	In1	
(Triggered)

Task
ADC

ST
Analog	In2	
(Triggered)

Task
ADC

ST

PWM1
RepCtrPeriod:	2

RepCtrEvent:	Overflow

ADC

PWM

ST
PWM2

RepCtrPeriod:	2
RepCtrEvent:	Underflow

ADC

PWM

ST

Control	Task
Trigger

LED
Port:	B
Pin:	[7]

Digital
Out

ST

Figure 2.9: Explicit phase-shifted ADC sampling

m

Overflow

Underflow

Task Trigger

ADC1 Trigger

TSW

ADC2 Trigger

PWM output
Complementary PWM

(Rep. period = 2)

Figure 2.10: PWM carrier and interrupts for phase-shifted ADC sampling

19

2 Target Support Architecture

The Code Generation Project

This section provides additional technical background on the software archi-
tecture of the embedded code generation project included with the STM32
TSP. A STM32CubeIDE project is included for each supported target chip in
the projects/ folder of the TSP. When building the project from directly from
the PLECS application, the files in gcc/g4 and gcc/f3 folder of the TSP are
used.

Static and dynamic code

The embedded code generation project consists of dynamic and static code. Dy-
namic code is generated by the PLECS Coder and is overwritten each time the
Build button is clicked in the Coder + Coder options... window. Static code
is provided with the TSP and should not be modified. The PLECS Coder also
generates additional dynamic configuration files that are used by the embed-
ded application.

When the Generate code only parameter checkbox is checked, then all gener-
ated dynamic code must be placed into the ${workspace_loc}/cube_g4xx/cg
or ${workspace_loc}/cube_f3xx/cg folder of the imported STM32CubeIDE
project depending on the configured target. Otherwise, by default all gener-
ated code is included in a new output directory in the same folder as the saved
PLECS model.

Control and background task dispatching

The application framework includes a rate monotonic scheduler to allow pre-
cise and efficient execution of the digital control loops. The base task is exe-
cuted at the highest priority. Additionally, up to 15 slower lower-priority tasks,
executed at different rates, can be specified. For further information on task
scheduling, refer to the "Code Generation" section in the PLECS User Manual.
A lowest-priority background task also exists to handle non-time critical tasks.
Figure 2.11 shows a configuration with a base task, one additional task, and a
background task executing in real-time on the MCU.

With every control task trigger interrupt issued by the Timer, PWM, or ADC
end-of-conversion (bold vertical bar), any lower priority tasks are interrupted
and the base task is executed. This ensures that the control task has the
highest priority. In addition, the lower priority tasks are periodically triggered
and executed when no higher priority tasks are active or pending.

20

https://www.plexim.com/sites/default/files/plecsmanual.pdf

The Code Generation Project

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks
must be an integer multiple of the base sample time. The non-default tasks
can be defined in the model window using the Task library component. An ex-
ample of an additional LED task, along with a base PWM task is shown in
figure 2.12.

Once the base and additional tasks have completed, the system continues with
the background task where lowest priority operations are processed.

Base task

Additional task 1

Background task

1 2 3 4 5 6

Figure 2.11: Nested control tasks

z-1

NOT

0.5

Control	Task
Trigger

LED_task

LED
Port:	B
Pin:	[7]

Digital
Out

ST

PWM

Task
PWM

ST

Figure 2.12: Example of an additional LED task along with a base PWM task

If the base task is still executing when a second control task interrupt is
received, then the processor will halt and an assertion will be generated.
Similar behavior occurs if a low priority task does not complete by the
time it is scheduled to execute again. Assertions can be monitored using
STM32CubeIDE debug tools.

21

2 Target Support Architecture

Embedded project architecture

Figure 2.13 shows the architecture of the embedded project included with the
STM32 TSP. At the top of the software stack is an application layer consist-
ing of the main application and the base and additional tasks. Next, there
is FreeRTOS™, a real-time operating system that provides a rate mono-
tonic scheduler for the nested control tasks, as previously described, and a
processor-in-the-loop (PIL) framework that acts as middleware for External
Mode communication with the PLECS application on the user PC. The hard-
ware abstraction layer (HAL) provides a hardware agnostic interface between
the application and chip specific configuration settings. This ensures code
portability between different processor platforms. The hardware specific func-
tion calls utilize the STM32 drivers to configure the MCU and key peripher-
als. At the bottom of the stack is the embedded hardware which includes the
MCU, peripheral devices, and other onboard accessories.

Application
main(){
 initialization()
 CONTROL_INIT
 background()
}

Additional TasksBase Task
Highest priority task

FreeRTOS PIL Framework

Hardware Abstraction Layer (HAL)

STM32 Software Library and Drivers

Embedded Hardware

Lower priority tasks

TM

Figure 2.13: Embedded project architecture

22

3

STM32 Coder Options

The Target page contains code generation options which are specific to the
STM32 Target Support Package.

General

Chip Selects the target device chip.

System clock frequency (SYSCLK) Specifies the system clock frequency in
megahertz (MHz).

Use internal oscillator Selects the on-chip oscillator as the clock source.
The clock frequency is automatically specified based on the target device.

External clock frequency Specifies the frequency in megahertz (MHz) of
the external clock source when the internal oscillator is not used.

External ADC reference Specifies the external reference for VREF+ in volts
(V). VREF+ is the positive reference voltage for an analog input (ADC) or out-
put (DAC) signal. VREF+ range is 1.62 V ≤ VREF+ ≤ VDDA,
where VDDA is analog power supply (1.62 V ≤ VDDA ≤ 3.6 V).

Step size tolerance The desired control task frequency may not be achiev-
able based on the system clock frequency and the nominal discretization time
step. This setting configures the Coder to either Enforce exact value by gen-
erating an error when the exact control task frequency is unachievable or to
automatically Round to closest achievable value.

Generate code only Selects the option to generate code into the speci-
fied STM32CubeIDE project. STM32CubeIDE must then be used to build the
project and flash the MCU.

3 STM32 Coder Options

STM32CubeIDE project directory Specifies the target folder for code gen-
eration. The code must be generated into a pre-configured STM32CubeIDE
project. When using the STM32CubeIDE project templates provided
with the STM32 target support package, code must be generated into the
{workspace_loc}/cube_g4xx/cg or {workspace_loc}/cube_f3xx/cg folder
where {workspace_loc} refers to the location of the imported project in the
STM32CubeIDE workspace.

Programming interface Provides an option to automatically program the
target MCU from PLECS after it finishes generating and building code. Pro-
gramming occurs over the GNU debug protocol and requires a GDB server.
There are two options available:

• Open OCD Supports the Open On-Chip Debugger package and GDB server,
supporting the ST-LINK debug link out of the box (no external tools
needed).

• Segger J-Link Supports Segger debug probes, which offer superior
throughput. The Segger J-Link tools must be downloaded and installed sep-
arately.

External Mode

These options are used to configure the External Mode communication with
the target device. This choice must be configured prior to building the project.

External Mode This setting adds code to the target device that enables the
External Mode. Code size and memory consumption are increased when the
External Mode is enabled. There are two communication options available,
Serial or JTAG.

Target buffer size Specifies how much target memory (16-bit words of
RAM) should be allocated to buffering signals for the external mode. The
number of words Nw required by the external mode can be calculated as fol-
lows: Nw = Nsignals · 2 · (Nsamples + 1). If more samples are requested than
what is supported by the memory allocation, PLECS will automatically trun-
cate the scope traces to the maximal possible Nsamples value. Note, however,
that requesting more memory than what is available on the target will result
in a build error. Recommended values for this setting are in the range of [500
. . . 2000]for STM32F3xxRE or STM32G4xxRx chips. For chips that can be iden-
tified with STM32F3xxR8 the target buffer size should be in the range of [100
. . . 500].

USART Rx Port Specifies the Rx port used for the External Mode USART
connection.

24

https://sourceforge.net/projects/openocd/

USART Rx Pin Specifies the Rx pin used for the External Mode USART con-
nection. This pin cannot be used by other peripherals.

USART Tx Port Specifies the Tx port used for the External Mode USART
connection.

USART Tx Pin Specifies the Tx pin used for the External Mode USART con-
nection. This pin cannot be used by other peripherals.

Debug interface Provides an option to communicate with the target MCU
from PLECS after building code from STM32CubeIDE. Communication occurs
over the GNU debug protocol and requires a GDB server. There are two op-
tions available:

• Open OCD Supports the Open On-Chip Debugger package and GDB server,
supporting the ST-LINK debug link out of the box (no external tools
needed).

• Segger J-Link Supports Segger debug probes, which offer superior
throughput. The Segger J-Link tools must be downloaded and installed sep-
arately.

25

https://sourceforge.net/projects/openocd/

3 STM32 Coder Options

26

4

STM32 Target Support Library
Component Reference

This chapter lists the contents of the STM32 Target Support library in alpha-
betical order.

4 STM32 Target Support Library Component Reference

Analog In

Purpose Output the measured voltage at an analog input channel, in continuous mode

Library STM32

Description

ADC

ST

This block configures the continuous conversion mode of the ADC peripheral.
In continuous mode, Analog In block converts the selected inputs continuously
without CPU intervention. The Analog In block output signal represents the
measured voltage at the ADC pin. The output is scalable and can be used
with an offset, where the output signal is calculated as input*Scale+Offset.
When the Analog input channel(s) parameter is vectorized, each input
channel is measured sequentially in the order of the input channel vector.

To convert selected inputs once per trigger, use the Analog In (Triggered)
block instead. Signal update of the Analog In (triggered) block is prioritized
over the regular Analog In block.

Parameters

Main

ADC unit
Selects the peripheral index for the ADC input when there are multiple
ADC submodules.

Cont. conversion input channel(s)
Index of the analog input channel for a specific ADC submodule. For vec-
torized input signals a vector of input channel indices must be specified.

Cont. conversion scale(s)
A scale factor for the input signal.

Cont. conversion offset(s)
An offset for the scaled input signal.

Cont. conversion acquisition time
Selects between a minimal or user specified ADC acquisition time.

Cont. conversion acquisition time value(s)
Sets the ADC acquisition time window in seconds.

28

Analog In

Offline only

Resolution
The resolution of the offline ADC model in bits. The resolution is applied
over the voltage reference range. If the parameter is left blank ADC quan-
tization is not modeled.

Voltage reference
The voltage range of the offline ADC model used to determine the ADC
resolution.

29

4 STM32 Target Support Library Component Reference

Analog In (Triggered)

Purpose Output the measured voltage at an analog input channel, in single or trig-
gered mode

Library STM32

Description

Task
ADC

ST

This block configures the single conversion mode of the ADC peripheral. In
single mode, Analog In (Triggered) block converts the selected inputs once per
trigger. The Analog In (Triggered) block output signal represents the mea-
sured voltage at the ADC pin. The output is scalable and can be used with
an offset, where the output signal is calculated as input*Scale+Offset. When
the Analog input channel(s) parameter is vectorized, each input channel is
measured sequentially in the order of the input channel vector.

The Trigger source parameter selects between an automatic or external
ADC start-of-conversion signal, where the external start-of-conversion signal
is connected to the ADC trigger port. If the ADC task output is the source of
a Control Task Trigger, then the control task will execute once the last ADC
channel is converted.

Although up to four injected measurements are supported by the STM32 ADC,
only up to three channels are allowed in PLECS. This is due to an ADC silicon
bug (revision Y) that can result in invalid measurements for the first channel.
As a consequence, the first measurement is always discarded and the block is
limited to a maximum of three conversions.

Parameters
Main

Trigger source
Selects an automatic or external start-of-conversion trigger.

ADC unit
Selects the peripheral index for the ADC input when there are multiple
ADC submodules.

Analog input channel(s)
Index of the analog input channel for a specific ADC submodule. For vec-
torized input signals a vector of input channel indices must be specified.

Scale(s)
A scale factor for the input signal.

30

Analog In (Triggered)

Offset(s)
An offset for the scaled input signal.

Acquisition time
Selects between a minimal or user specified ADC acquisition time.

Acquisition time value(s)
Sets the ADC acquisition time window in seconds.

Offline only

Resolution
The resolution of the offline ADC model in bits. The resolution is applied
over the voltage reference range. If the parameter is left blank ADC quan-
tization is not modeled.

Voltage reference
The voltage range of the offline ADC model used to determine the ADC
resolution.

31

4 STM32 Target Support Library Component Reference

Base Task Load

Purpose Provide the CPU load generated by the base task as a percentage of the base
task period

Library STM32

Description

1Base	Task
Load

ST

This block outputs the percentage of time that is used by the base control task
with one interrupt period. In case of multi-tasking, the output corresponds to
the Base task load only, and does not include the load created by additional
lower-priority tasks.

32

CAN Port

CAN Port

Purpose Set up a CAN communication port

Library STM32

Description

CAN	Port

on
en

ea
CAN	1

ST

The block sets up a CAN (Controller Area Network) communication port.

The input en determines the CAN port state. Setting en to zero will force the
CAN port to the bus-off state, while setting the port to 1 allows the CAN port
to transition to bus-on. A bus-off condition has to be cleared by setting the
enable signal to 0, and then back to 1.

The output on is 1 to signal bus-on status, 0 otherwise. The output ea is 1 to
signal error active status, 0 otherwise.

Parameters

Main

CAN interface
Selects the CAN interface to use.

CAN protocol
Selects the CAN protocol to use. CAN FD supports bit rates higher than 1
Mbit/s and payloads larger than 8 bytes.

GPIO

Tx port
Selects the port used to transmit data.

Tx pin
Selects the pin used to transmit data.

Rx port
Selects the port used to receive data.

Rx pin
Selects the pin used to receive data.

33

4 STM32 Target Support Library Component Reference

Bit rate configuration

Bit rate [bit/s]
Defines the bit rate that is used on the connected CAN bus. All devices on
a CAN bus must be configured to use the same bit rate. This parameter is
only available if the parameter CAN protocol is set to CAN 2.0.

Bit sample point [%]
Defines the point in time were the bus level is read and interpreted as the
value. This parameter is only available if the parameter CAN protocol is
set to CAN 2.0.

Bit rate switching
Enables or disables bit rate switching by setting this parameter to En-
abled or Disabled respectively. This option is onyl available if CAN pro-
tocol is set to CAN FD.

Nominal bit rate [bit/s]
Defines the bit rate during the nominal phase (also known as arbitration
phase) that is used on the connected CAN bus.

Nominal bit sample point [%]
Defines the point in time were the bus level is read and interpreted in the
nominal phase.

Data bit rate [bit/s]
Defines the bit rate during the data phase that is used on the connected
CAN bus. This parameter is only accessible when Bit rate switching is
Enabled.

Data bit sample point [%]
Defines the point in time were the bus level is read and interpreted in the
data phase. This parameter is only accessible when Bit rate switching is
Enabled.

Advanced

Advanced configuration
If set to Enabled, advanced bit timing settings can be configured. When
set to Disable the bit timing will be automatically deduced from the con-
figured bit rate and sampling point. The following default configuration
will be used in this case:

• Nominal/Data rate bit length is maximized to have as much as possi-
ble time quanta to construct a bit time. This will result in a low bit rate
prescaler (BRP).

34

CAN Port

• Nominal/Data SJW is choosen to be as large as possible.
• SSP offset is set to be in the middle of the data bit: (1 + Tseg1 + Tseg2)/2.
• SSP filter is set to 0.

All following parameters are only available if the advanced configuration is
set to Enable and CAN FD protocol is used.

Nominal rate bit length [1+Tseg1+Tseg2]
Defines the sum of all bit time segments during the nominal phase ex-
pressed in time quanta as 1 + Tseg1 + Tseg2.

Nominal rate SJW [Tq]
Synchronization jump width during nominal phase expressed in time
quanta.

Data rate bit length [1+Tseg1+Tseg2]
Defines the sum of all bit time segments during the data phase expressed
in time quanta as 1 + Tseg1 + Tseg2.

Data rate SJW [Tq]
Synchronization jump width during data phase expressed in time quanta.

Secondary sampling point (SSP)
If set to Enabled advanced secondary sampling point settings can be con-
figured and the automatic transceiver delay compensation is enabled.

SSP offset [Tq]
Defines the secondary sampling point offset expressed in time quanta.

SSP filter [Tq]
Defines the secondary sampling point filter expressed in time quanta.

35

4 STM32 Target Support Library Component Reference

CAN Receive

Purpose Receive CAN messages

Library STM32

Description

CAN	Receive

id1

	v

	d1
CAN	1
	RX

ST

The block initiates the reception of CAN messages with a given identifier (ID)
on the given CAN interface. Up to three CAN messages can be configured. On
reception of a CAN message the data is made available on the block output dx
as a vectorized signal of the provided frame length. The output v is 1 for one
simulation step when new data is received, 0 otherwise. The output v has a
width equal to the configured number of messages. The f output is only rele-
vant when CAN FD is used and configured in the CAN Port (see page 33) block.
The output f is a vectroized signal containing the following information for
each configured message:

• The first signal specifies the error state indicator. If the signal is 0 the
transmitting node is error passive, 1 when the node is error active.

• The second signal specifies whether the Rx frame is received in classic (0)
or FD (1) format.

• The third signal specifies wheter the Rx frame is received without (0) or
with (1) bit rate switching.

Parameters CAN interface
Selects the CAN interface to use. The selected CAN interface must be con-
figured using a CAN Port (see page 33) block.

Number of messages
Selects the number of messages to be received.

CAN ID source
Selects whether the CAN ID is specified as a parameter or is supplied as
an input signal.

CAN ID(s)
The ID(s) for which the block receives CAN messages. The CAN ID(s) can
be supplied as either 11-bit value(s) (for CAN 2.0A) or a 29-bit value(s) (for
CAN 2.0B). When the CAN ID source is set to Parameter, the length of
the CAN ID(s) vector has to match the number of messages.

Frame format
Specifies the frame format that is used when filtering for matching CAN
messages. Possible values are:

36

CAN Receive

• Standard CAN for CAN 2.0A messages with an 11-bit ID. The standard
11-bit ID provides for 211, or 2048 different message identifiers.

• Extended CAN for CAN 2.0B messages with an 29-bit ID. The extended
29-bit ID provides for 229, or 537 million identifiers.

• Auto uses the Standard format if the specified CAN ID is smaller than
2047. Otherwise, the Extended format is used.

Frame length
Specifies the frame length of the CAN message in bytes. This parameter
must be specified as a vector whose length corresponds to the number of
messages.

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

37

4 STM32 Target Support Library Component Reference

CAN Transmit

Purpose Transmit CAN messages

Library STM32

Description

CAN	Transmit

d1
id1 CAN	1

	TX

ST

The CAN Transmit block sends out data on a CAN bus. The data to send
must be provided on the block input dx as a vectorized signal with data type
uint8. The length of the transmitted CAN message is determined by the
width of the input signal (1 to 8 bytes for CAN2.0 and 1 to 64 bytes for CAN
FD).
Messages are either sent regularly with a fixed sample time or on demand
when the trigger input changes. When configured for triggered execution, mes-
sages are sent when the trigger signal changes in the manner specified by the
Trigger type parameter:
rising

Data is sent when the trigger signal changes from 0 to a non-zero value.
falling

Data is sent when the trigger signal changes from a non-zero value to 0.
either

Data is sent when the trigger signal changes from 0 to a non-zero value or
vice versa.

Parameters CAN interface
Selects the CAN interface to use. The selected CAN interface must be con-
figured using a CAN Port (see page 33) block.

Number of messages
Selects the number of messages to be received.

CAN ID source
Selects whether the CAN identifier (ID) is specified as a parameter or is
supplied as an input signal.

CAN ID(s)
The ID(s) for which the block receives CAN messages. The CAN ID(s) can
be supplied as either 11-bit value(s) (for CAN 2.0A) or a 29-bit value(s) (for
CAN 2.0B). When the CAN ID source is set to Parameter, the length of
the CAN ID(s) vector has to match the number of messages.

Frame format
Specifies the frame format of the CAN messages to be transmitted. Possi-
ble values are:

38

CAN Transmit

• Standard CAN for CAN 2.0A messages with an 11-bit ID. The standard
11-bit ID provides for 211, or 2048 different message identifiers.

• Extended CAN for CAN 2.0B messages with an 29-bit ID. The extended
29-bit ID provides for 229, or 537 million identifiers.

• Auto uses the Standard format if the specified CAN ID is smaller than
2047. Otherwise, the Extended format is used.

Execution
Selects between regular and triggered execution.

Trigger type
The direction of the edges of the trigger signal upon which the data is
sent, as described above (for triggered execution only).

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

39

4 STM32 Target Support Library Component Reference

Control Task Trigger

Purpose Specify the base sample time and trigger for the main control tasks

Library STM32

Description The digital control loop executes at a nominal base sample time. The input to
the Control Task Trigger specifies the interrupt that triggers a control loop ex-
ecution. The source of the interrupt can be from the ADC end-of-conversion
signal, PWM counter underflow and overflow events, or the Timer block.
When a Control Task Trigger is not included in the subsystem an appropriate
trigger source is automatically determined.

In a multi-tasking mode (defined in the Scheduling tab of the Coder Options
dialog), the Control Task Trigger block triggers the Base task associated with
the base sample time.

The offline simulation will model the impact of controller discretization when
the Control Task Trigger is included. For offline simulations the Forward Eu-
ler method with the nominal base sample time is used to integrate continuous
states within the subsystem containing the Control Task Trigger. Offline sim-
ulations will use the default subsystem execution settings when the Control
Task Trigger block is not included in the subsystem.

Parameters Nominal base sample time
Specifies the nominal sample time of the discretized model in seconds.
The nominal base sample time value is synchronized with the model Dis-
cretization step size of the PLECS Coder settings.

40

DAC

DAC

Purpose Generate an output voltage from the input signal; the output voltage is calcu-
lated as input*Scale+Offset

Library STM32

Description

1 DAC
ST

This block generates a voltage on the DAC pin in the range of 0 V to 3.3 V. The
output is scalable and can be used with an offset, where the output signal is
calculated as input*Scale+Offset. Output voltage limitations can also be set.

Parameters DAC selection
Configure the DAC pin either as by DAC unit and channel, or by Port
and Pin number.

DAC unit
Selects the desired DAC interface.

DAC channel
Index of the DAC output channel for a specific DAC interface.

Port
Selects the port name of the DAC channel.

Pin number
Defines the pin number of the DAC channel.

Scale
A scale factor for the output signal.

Offset
An offset for the scaled output signal.

Minimum output voltage
The lowest value that the output voltage can reach.

Maximum output voltage
The highest value that the output voltage can reach.

41

4 STM32 Target Support Library Component Reference

Digital In

Purpose Read a digital input

Library STM32

Description

Digital	In

Digital
In

ST

The output signal is 1 if the input voltage is higher than the high level input
voltage threshold, VIH , and 0 if it is lower than the low-level input voltage,
VIL. For other input voltages the output signal is undefined. Refer to the de-
vice data sheet for the electrical characteristics of a specific target. During an
offline simulation the block behaves like a simple feedthrough.

Parameters Port
Selects the port name of the digital input channel.

Pin number(s)
Defines the pin number of the digital input channel. For vectorized input
signals a vector of input channel indices must be specified.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the digital input.

42

Digital Out

Digital Out

Purpose Set a digital output

Library STM32

Description

Digital
Out

ST

The output is set low if the input signal is zero and is set high for all
other values. During an offline simulation the block behaves like a simple
feedthrough.

Parameters Port
Selects the port name of the digital output channel.

Pin number(s)
Defines the pin number of the digital output channel. For vectorized out-
put signals a vector of output channel indices must be specified.

Output characteristic
Specifies whether an internal pull-pull or open drain resistor is connected
to the digital output.

43

4 STM32 Target Support Library Component Reference

Override Probe

Purpose Allow modifying input value during a PIL simulation

Library STM32

Description

Override
Probe

ST

During a PLECS processor-in-the-loop (PIL) simulation, an Override Probe
allows PLECS to overwrite variables in the embedded code.

For further details on the PIL simulation, refer to the PIL User Manual.

44

https://plexim.com/sites/default/files/pilmanual.pdf

Peak Current Controller

Peak Current Controller

Purpose Implement peak current control with ramp compensation

Library STM32

Description

Ipk Ipk
Controller

ST

The Peak Current Controller (PCC) block implements peak current control
with slope compensation.

In a peak current-mode controller, at the beginning of each switching cycle the
output is set (gate signal is turned ON) without a pre-determined duty cycle.
Then, when the sensed inductor current exceeds the peak current reference
value, the output is reset (gate signal is turned OFF). The duty cycle is there-
fore determined by the rise of the inductor current during the on-time.

One of the drawbacks of the peak current-mode controller is that it suffers
from an inherent instability if the applied PWM duty cycle is greater than
50%. This is explained in the figure titled “Slope compensation”. If a small
disturbance is introduced into the system and if the applied duty cycle is less
than 50%, the disturbance eventually decays to zero. However, if the applied
duty cycle is greater than 50%, the inductor current will start to diverge and
will no longer be stable. The resulting duty cycle values will vary from small
to large, on an alternating cycle basis, called sub-harmonic oscillations. To
limit these sub-harmonic oscillations, instead of providing a constant peak cur-
rent reference, additional slope compensation is applied, which then ensures
the stability of the inductor current.

Internally, the PCC block makes use of multiple MCU peripherals. The first
component is a DAC that provides a peak current set-point including ramp,
for controlling the inductor current. The second is a comparator (COMP);
the sensed current is fed to the comparator, which is then compared to the
peak current set-point provided by the DAC. The output of the COMP block
is fed to the third component, which is the high-resolution timer (HRTIM).
The HRTIM generates the PWM waveforms and synchronizes the DAC at the
specified frequency.

The peak current reference (Ipk) is provided as an input to the PCC block.
Logic is included in the PCC block such that when Ipk = 0, all associated
PWM outputs are driven into the passive state.

Parameters
45

4 STM32 Target Support Library Component Reference

duty < 0.5

duty > 0.5

duty > 0.5

without slope compensation

with slope compensation

desired inductor current projected inductor current peak current reference

Slope compensation

HRTIM
Timing Unit

ST

COMP
ST

Sawtooth
generation

DAC
Channel

ST

Peak Current Controller

Ipk

ST

PWM outputs
PWM

trigger

sensed currents

with slope compensation

slope reset and steps

peak current reference

Peak current controller schematic

Main

High resolution timer unit
Selects the high resolution timer (HRTIM) unit to use. There are two

46

Peak Current Controller

HRTIM units available. Each HRTIM unit can independently generate a
single PWM output or a complementary PWM pair on up to three PWM
channels.

Switching frequency
Defines the switching frequency of the output signal in Hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired carrier frequency is not achievable
based on the system clock frequency.

Current sense scale
Scales the peak current reference (Ipk) into values with physical units to
be used for the control algorithm.

Ramp slope
Defines ramp slope rate in Amperes per second (A/s). Slope compensation
can be applied to ensure stability when the output duty cycle exceeds 50%.
Entering a parameter, Iramp, reduces Ipk during each switching cycle as
follows: I ′pk = Ipk − Iramp · t, where t is the time elapsed from the start of
the switching cycle. Slope compensation can be omitted by setting Iramp to
0. On chips of the F3 target family, slope compensation is not supported
and has to be omitted by setting the ramp slope to zero.

Ramp offset
Defines ramp offset in Amperes (A).

Leading edge blanking time
This sets the minimum output on time at the beginning of each switching
period in seconds (s). Leading edge blanking time is used to prevent the
turn-on transient current from triggering the peak current controller.

Channel

Mode
Configures the output PWM channel. Each HRTIM unit can independently
generate a single PWM output or a complementary PWM pair on up to
three PWM channels.

Sense port
Selects the port of the sensed current.

Sense pin
Configures the pin of the sensed current.

47

4 STM32 Target Support Library Component Reference

Timing unit
Selects the HRTIM unit of the output channel. HRTIM timing unit F is
not available on chips of the F3 target family.

Output Polarity
Defines the logical output of the PWM output when an active state is de-
tected. The active state occurs when the sensed current exceeds the peak
reference current set-point.

Switching blanking time
Specifies the delay between the rising and falling edges of a complemen-
tary PWM output pair in seconds (s).

48

Powerstage Protection

Powerstage Protection

Purpose Provide powerstage safety features

Library STM32

Description

enPowerstageProtection

ST

The Powerstage Protection block implements an interlock, which is a safety
mechanism, to enable or disable all the PWM outputs on the target device.
The PWM outputs are disabled unless there is a logical low to high transition
on the input signal, labeled en. This prevents the PWM signals from becom-
ing active as soon as the code is executed on the target, thereby ensuring safe
operation.

Additionally, there is an option to configure a digital output as a powerstage
enable signal. This signal can then be used, for example, to provide an enable
signal to external gate driver chips. The enable polarity of the digital out-
put, specified in the Powerstage enable pin can be defined as:

• Active low: a logical low to high transition on the input signal, en, sets the
digital output pin to logic low (0).

• Active high: a logical low to high transition on the input signal, en, sets
the digital output pin to logic high (1).

To reiterate, the powerstage enable signal is an output signal of the Power-
stage Protection block. This signal does not contribute to enabling or disabling
PWM outputs, and can be considered as a status indicator of the Powerstage
Protection interlock state. Irrespective of the configuration of this signal (Dig-
ital output or None), the Powerstage Protection block, if included in the
schematic, disables all the PWM outputs on the target device, unless there
is a logical low to high transition on the input signal, labeled en.

When the PWM outputs are disabled via the Powerstage Protection input, all
associated PWM outputs are driven into the passive state.

If the Powerstage Protection block is omitted from the schematic, then all
PWM outputs will be continuously enabled.

Parameters
Main

Powerstage enable signal
Provides an option to configure a digital output as a powerstage enable
signal.

49

4 STM32 Target Support Library Component Reference

• Digital output: Configures a digital output as a powerstage enable signal.
This signal can then be used, for example, to provide an enable signal to ex-
ternal gate driver chips. This signal can be considered as a status indicator
of the Powerstage Protection interlock state.

• None: Powerstage enable signal is not configured.

Powerstage enable polarity
Defines the polarity of the powerstage enable signal.

• Active low: a logical low to high transition on the input signal, en, sets the
GPIO pin to logic low (0).

• Active high: a logical low to high transition on the input signal, en, sets
the GPIO pin to logic high (1).

Powerstage enable port
Selects the digital output port to be configured as the powerstage enable
signal.

Powerstage enable pin
Defines the digital output pin to be configured as the powerstage enable
signal.

Offline only

Interlock
For convenience, the interlock can be enabled or disabled for offline simu-
lations.

• Select Simulate to enable the simulation of the interlock safety mecha-
nism. The output of the the Powerstage Protection block in the top-level
schematic is disabled unless there is a logical low to high transition on the
input en.

• Select Do not Simulate to disable the simulation of the interlock mech-
anism. The output of the the Powerstage Protection block can then be en-
abled at the start of the simulation by tying en to 1.

50

Pulse Capture

Pulse Capture

Purpose Time-stamp edges of a pulse train

Library STM32

Description

c
v
o

CAP
ST

The capture blocks allows timestamping signal transitions (events) on input
pins, e.g. for period and/or duty cycle measurements. The timestamps are
made available on the block output c.

The output v is 1 for one simulation step after an event has been triggered, 0
otherwise. The output o is set to 1 if more than one capture event happened
during the last model step. This indicates an overcapture state. It is not pos-
sible to deduce how many times the event was capture in the last model step.
Overcapture events should therefore be avoided to ensure a reliable pulse de-
tection. The output o is automatically cleared after it has been read.

The pulse capture block can be used in either PWM capture Mode or as Indi-
vidual channels.

In PWM capture mode, one channel of the selected TIM unit can be used to
get information about the period and duty cycle of the captured PWM signal.
The first signal of the c output reflects the measured period, the second signal
of the c output can be used to calculate the duty cycle.

When configured as Individual channels, up to three channels can be used
to capture edges on individual signals. Also, the outputs c, v and o are vector-
ized signals if the block uses multiple channels.

The figure below illustrates with an example how the different output signals
behave if Mode is set to Individual channels. The channels 1 and 2 are con-
figured as described in the following table:

Channel Edge Prescale

1 Rising every 2nd event

2 Falling every 4th event

51

4 STM32 Target Support Library Component Reference

Model Step

Pulse Input

CAP Output

Valid Output

Overcapture
Output

tStep

 tPulse

An illustrative example for different capture settings when the Pulse Capture
block is used with individual channels (channel 1 in red, channel 2 in blue).

If multiple capture events happen inside a model step the overcapture output
will output a 1 at the end of the respective model step. The counter is oper-
ated in free-running mode and therefore not reset by a capture event. To cal-
culate the period of the pulse inpunt signal one has to calculate the difference
between two consecutive capture events.

Parameters

Main

TIM unit
Selects the timer unit to use.

Mode
Specifies the desired capture mode. If set to Individual channels the
channels of the selected TIM unit can be used to capture up to three in-
dividual signals. The PWM capture mode facilitates the measurement of
frequency and duty cycle. In PWM capture mode exactly one Channel has
to be enabled.

Clock prescale
Specifies the desired prescale value.

52

Pulse Capture

Channel 1/2/3

Capture
Provides an option to disable or enable an input channel.

Edge
The edge detection trigger can be set on Rising, Falling or Either.

Prescale
Specifies the desired prescale value for an individual channel.

Port
Selects the port name of the capture channel.

Pin
Defines the pin number of the capture channel.

Offline only

System clock frequency (SYSCLK)[MHz]
Defines the system clock frequency in MHz for offline simulations. For
real-time simulations, the capture block uses the system clock frequency
parameter specified in the Target tab of the Coder Options dialog.

53

4 STM32 Target Support Library Component Reference

PWM

Purpose Generate a complementary PWM signal pair

Library STM32

Description

Task

ADC

PWM

ST

The PWM block generates a single or complementary PWM pair on one or
more PWM resources. The modulation index for each channel must be pro-
vided via the input signal, which is a vectorized signal if the block uses mul-
tiple channels. The carrier starts at 0 and varies between 0 and 1. During an
offline simulation it behaves as a normal PWM generation block.

The PWM block can configure interrupts to trigger the ADC start-of-
conversion and the Control Task Trigger. Interrupts are synchronized with the
PWM carrier, and the repetition counter period determines how many events
need to occur before a trigger is generated, as shown in the figure below.
When the carrier type is symmetrical, for even values of repetition counter
period, the interrupts will occur at the carrier underflow or overflow events.
Underflow and overflow events correspond to PWM carrier reaching the re-
spective carrier minimum or carrier maximum values.

Overflow

Underflow

Symmetrical Sawtooth

Rep. period = 1

Rep. period = 2

Rep. period = 2

Rep. period = 3

Rep. period = 4

Rep. period = 4
Overflow

Underflow

Trigger events based on the repetition counter period

54

PWM

The figure below shows an example of a symmetric PWM carrier with the rep-
etition counter period set to 2, the trigger event set to underflow, and the po-
larity configured with an active state logic of ‘1’.

m

Overflow

Underflow
PWM output

Complementary PWM

Task Trigger
ADC Trigger

TSW

PWM and trigger schemes for symmetric carrier

The PWM block protection parameters configure the break input settings for
all PWM resources associated with the block. When a break input event is
detected, all the PWM outputs are shutdown and are forced into the passive
state.

Parameters
Main

TIM unit
Selects the advanced-control timer unit to use. There are two TIM units
available, TIM1 or TIM8. Each TIM unit can independently generate a sin-
gle PWM output or a complementary PWM pair on up to three PWM chan-
nels.

Carrier type
Selects the carrier waveform, either sawtooth or symmetrical.

Carrier frequency
Defines the frequency of the carrier in Hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired carrier frequency is not achievable
based on the system clock frequency.

Blanking time
Delay between the rising and falling edges of a complementary PWM out-
put pair in seconds (s).

55

4 STM32 Target Support Library Component Reference

Enable port
An additional component port is created if Enable port is set to Show. Ap-
plying a signal = 0 to this port sets the PWM channel(s) to passive.

Channel

Mode
Configures the output PWM channel. Each TIM unit can independently
generate a single PWM output or a complementary PWM pair on up to
three PWM channels.

Polarity
Defines the logical output of the PWM output when an active state is de-
tected. The active state occurs when the modulation index exceeds the car-
rier.

Port
Selects the port of the PWM output.

Pin
Configures the pin of the PWM output.

Complementary Port
Selects the port of the complementary PWM output.

Complementary Pin
Configures the pin of the complementary PWM output.

Events

ADC trigger
Enables or disables the ADC start-of-conversion trigger.

Task trigger
Enables or disables the Control Task Trigger.

Repetition counter period
Determines how many events need to occur before a trigger is generated.

Trigger event
Selects the trigger event. When the carrier type is symmetrical, for even
values of repetition counter period, the interrupts will occur at the carrier
underflow or overflow events. Underflow and overflow events correspond
to PWM carrier reaching the respective carrier minimum or carrier maxi-
mum values.

56

PWM

Protection

Break input
Provides an option to configure a digital input to force shutdown all the
PWM outputs associated with the block and drive them into passive
state.

• Disabled: Break input is not configured.
• Active low: a logical high to low transition on the input signal will force

the PWM outputs into passive state.
• Active high: a logical low to high transition on the input signal will force

the PWM outputs into passive state.

Break input port
Selects the digital input port to be configured as the break input.

Break input pin
Configures the digital input pin to be configured as the break input.

57

4 STM32 Target Support Library Component Reference

Quadrature Encoder Counter (QEP)

Purpose Counts edges generated by a quadrature encoder

Library STM32

Description

Counter

c

ic
iQEP

ST

The Quadrature Encoder Counter counts edges which are generated from a
quadrature encoder. The A, B, and I outputs of the encoder are connected to
the input GPIOs of the microcontroller.

The block output c represents the current counter value, port i represents the
index pulse, and port ic outputs the latched counter value from the previous
index pulse.

The counter counts up or down depending on the sequence of input pulses.
The counter value will increase when the direction of rotation results in the
rising edge of B following the rising edge of A and will decrease in the oppo-
site direction of rotation. For each rising and falling edge of the A and B en-
coder output signals the counter will increment or decrement. Therefore the
Maximum counter value must match the number of line pairs of the en-
coder multiplied by the number of counted edges per line pair minus 1. As
an example, an encoder with 1024 line pairs would have a maximum count
of 4095 since the QEP module counts all edges of A and B (4 edges per line
pair).

Once the counter reaches the value specified in parameter Maximum
counter value it is reset to zero on the next detected edge in the positive di-
rection. Vice versa, the counter is set to Maximum counter value when it is
zero and detects an edge in the negative direction. If connected and configured
by the Mode parameter, the counter is also reset when the rising edge of the
index input is detected.

Parameters
Main

TIM unit
Selects the timer unit used.

Maximum counter value
The counter is reset to zero when it has reached the Maximum counter
value and detects an input edge in the positive direction. The counter is
set to the Maximum counter value when it is zero and detects an input
edge in the negative direction.

58

Quadrature Encoder Counter (QEP)

Mode
Selects whether the counter should be reset by a positive pulse on the in-
dex input or on overflow only. Three different modes are available:

• Free running: The counter is reset on overflow only. Output ports i and ic
are not available, and the output I of the encoder is not required.

• Free running with index capture: The counter is reset on overflow only.
In addition, the index pulse is captured and the latched counter value from
the previous index pulse is made available at the output port ic.

• Reset by index pulse: The counter is reset by a positive pulse on the in-
dex input.

Channel A

Port
Selects the port of the channel A input.

Pin
Configures the pin of the channel A input.

Channel B

Port
Selects the port of the channel B input.

Pin
Configures the pin of the channel B input.

Index

Port
Selects the port of the index pulse input.

Pin
Configures the pin of the index pulse input.

59

4 STM32 Target Support Library Component Reference

Read Probe

Purpose Provide read access to signal during a PIL simulation

Library STM32

Description

Read
Probe

ST

During a PLECS processor-in-the-loop (PIL) simulation, a Read Probe allows
PLECS to read variables in the embedded code.

For further details on the PIL simulation, refer to the PIL User Manual.

60

https://plexim.com/sites/default/files/pilmanual.pdf

SinCos

SinCos

Purpose Fast calculation of sine and cosine

Library STM32

Description

sin
cos

ST

Utilizes the CORDIC co-processor for fast calculation of sine and cosine for
chips from the G4 target family. For the F3 target family a look-up table
based implementation is used to calculate sine and cosine efficiently.

61

4 STM32 Target Support Library Component Reference

SPI Master

Purpose Implement SPI Master connected to one or multiple slaves

Library STM32

Description

SPI	Master

RXTX

	v
		oSPI	1

Master

ST
The Serial Peripheral Interface (SPI) is a high-speed synchronous serial in-
put/output device that allows a serial bit stream of programmable length (4 to
16 bits) to be shifted into and out of the device at a configurable bit-transfer
rate. The SPI is usually used for communications between the MCU controller
and external peripherals, or another controller.

The SPI is a master-slave based interface with a single master and one or
more slave devices.

The interface consists of the following signals:

• MISO Serial data input (master in/slave out)
• MOSI Serial data output (master out/slave in)
• SCK Shift-clock, generated by the SPI Master
• /CS Chip-select or slave-select signal. The chip-select signal is an active-low

signal that enables the MISO and MOSI ports of the SPI Slave.

The SPI Master block provides a clock signal (SCK) which generates a config-
urable number of clock pulses during each simulation step. For both the slave
and the master, data is shifted out of the shift registers on one edge (rising
or falling) of the CLK and latched into the shift register on the opposite clock
edge. If the clock phase (CPHA) bit is configured to 1, data is transmitted and
received a half-cycle before the SCK transition.

Multiple SPI Slaves can be supported by a single master through chip-select
(/CS) signals. The figure below shows an example of a single SPI Master with
two SPI Slaves.

62

SPI Master

SPI Master

SCK

MOSI [TX]

MISO [RX]

/CS1

/CS2

SPI Slave 1

SCK

MOSI [RX]

MISO [TX]

/CS1

SPI Slave 2

SCK

MOSI [RX]

MISO [TX]

/CS2

[Data-out 1 Data-out 2],

[Data-in 2]

[Data-in 1]

SPI Master with two SPI Slaves

Model Step

MISO

MOSI

/CS1

/CS2

0: Slave 1 active

1: Slave 1 inactive

0: Slave 2 active
1: Slave 2 inactive

tDiscretization Step

0: Slave 1 active

1: Slave 2 inactive

Data-in 1 Data-in 2

Data-out 1 Data-out 2

Data-in 1

Data-out 1

An example of signal exchange between one SPI Master and two SPI Slaves

The SPI Master block exchanges data with only one SPI Slave per block exe-
cution step. If there are multiple slaves, then data is exchanged over multiple
steps. For example, as illustrated in the figure above, during the first step,

63

4 STM32 Target Support Library Component Reference

the master enables SPI Slave 1 using the chip-select signal and transmits
Data-out 1; at the same time the master also receives Data-in 1 from the first
slave. During the second step, after enabling SPI Slave 2, the master trans-
mits Data-out 2 and receives Data-in 2 from the second slave simultaneously.
This process then repeats.
An output value of 1 at the v port indicates that valid data is sent to all the
slaves.
The data to be transmitted is provided at the input TX and the data received
is available at the output RX.
• TX: For transmitting data to multiple slaves, provide a vector with a length

equal to the sum of the number of words per transmission per each slave.
For example, in the figures above, if Data-out 1 is a packet of 4 words
[1,2,3,4] and Data-out 2 is a packet of 3 words [16,17,18], then the input
to the TX block is provided as a vector of 7 words [1,2,3,4,16,17,18].

• RX: Similarly, data from multiple slaves is received as a vector with a
length equal to the sum of the number of words per transmission per each
slave. For example, in the figures above, if Data-in 1 is a packet of 4 words
[21,22,23,24] and Data-in 2 is a packet of 3 words [36,37,38], then the out-
put of the RX block is read as a vector of 7 words [21,22,23,24,36,37,38].

If the SPI Master does not have enough time to complete the transmission be-
fore the block is executed again, the output o turns 1 to indicate an overrun
error.
If an overrun error is being signaled at the o port of the SPI Master, it is pos-
sible that the task with which the SPI Master is associated executes too fast.
In this case, either reduce the SPI Master execution task rate or increase the
SPI clock rate.
For example, if SCK is set as 180000 Hz, and is expected to transmit a packet
of 4 words at 8 bits per word, then the time it would take to transmit one
packet is

1

180000
· 4 · 8 = 1.78 · 10−4 seconds.

In this case, the execution step size of the SPI Master must be set to values
greater than 0.178 milliseconds.

Parameters
Setup

SPI module
Selects the SPI module to use.

64

SPI Master

SPI clock [Hz]
Defines the SPI clock frequency (SCK), also known as the SPI Baud Rate,
in Hz. If the SPI clock frequency cannot be hit accurately, a warning is is-
sued during code generation. Please refer to the STM32 technical refer-
ence for more information on the range of achievable SPI clock rates.

Bits per word (4-16)
Defines the length of a single data word during transmission. The allowed
length is 4 to 16 bits per word.

Mode [CPOL, CPHA]
Defines four SPI clocking modes, controlled by clock polarity (CPOL) and
clock phase (CPHA) bits. CPOL controls whether the clock signal is high
(1) or low (0) when idle. CPHA controls whether data is shifted in and out
on the rising or falling edge of the clock signal. The following table sum-
marizes the clocking schemes:

SPI Clocking Modes

Mode CPOL CPHA SPI Clock Scheme

SPI_MODE0 0 0 Rising edge without delay

SPI_MODE1 0 1 Rising edge with delay

SPI_MODE2 1 0 Falling edge without delay

SPI_MODE3 1 1 Falling edge with delay

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

GPIO Settings

SCK Port
Selects the port name of the clock frequency signal.

SCK Pin
Defines the pin number of the clock frequency signal.

MISO Port
Selects the port name of the MISO signal.

65

4 STM32 Target Support Library Component Reference

MISO Pin
Defines the pin number of the MISO signal.

MOSI Port
Selects the port name of the MOSI signal.

MOSI Pin
Defines the pin number of the MOSI signal.

Slave(s)

CS Port
Selects the port name to use for chip-select. In a multi-salve setup, all in-
dividual chip-select signals must be assigned to the same port group.

CS Pin(s)
Defines the pin number of the chip-select signal. Any GPIO can be con-
figured to be a chip-select signal. Provide a vector to configure multiple
slaves.

Words per transmission (vector for multiple slaves)
Configures the number of transmitted data words in each simulation step.
Provide a vector to configure multiple slaves.

66

SPI Slave

SPI Slave

Purpose Implement SPI Slave

Library STM32

Description

SPI	Slave

RXTX

	v
	oSPI	1

Slave

ST

For a detailed description of the SPI protocol and signals, refer to the SPI
Master (see page 62) block.

The SPI Slave is synchronized to the clock generated by the SPI Master. The
SPI Master uses a dedicated active-low chip-select signal that enables the
MISO and MOSI ports of the SPI Slave.

The data to be transmitted is provided at the input TX and the data received
is available at the output RX. An output value of 1 at the v port indicates a
valid data exchange with the SPI Master.

If the SPI RX port receives new data before the previous data has been read,
the existing data will be overwritten and lost. If this occurs, the output o
turns 1 to indicate an overrun error.

There are two considerations to note when overrun errors occur:

• The master is not allowed to start transmitting before the slave is up and
running. If the slave is booting up while the master is transmitting, then it
may receive an incomplete first message, from which it will not be able to
recover.

• In order to avoid overruns, the SPI Slave block must be executed faster
than the rate at which the SPI Master is sending data.

Parameters
Setup

SPI module
Selects the SPI module to use.

Bits per word (4-16)
Defines the length of a single data word during transmission. The allowed
length is 4 to 16 bits per word.

67

4 STM32 Target Support Library Component Reference

Mode [CPOL, CPHA]
Defines four SPI clocking modes, controlled by clock polarity (CPOL) and
clock phase (CPHA) bits. CPOL controls whether the clock signal is high
(1) or low (0) when idle. CPHA controls whether data is shifted in and out
on the rising or falling edge of the clock signal. The following table sum-
marizes the clocking schemes:

SPI Clocking Modes

Mode CPOL CPHA SPI Clock Scheme

SPI_MODE0 0 0 Rising edge without delay

SPI_MODE1 0 1 Rising edge with delay

SPI_MODE2 1 0 Falling edge without delay

SPI_MODE3 1 1 Falling edge with delay

Words per transmission
Configures the number of transmitted data words in each simulation step.

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

GPIO Settings

SCK Port
Selects the port name of the clock frequency signal.

SCK Pin
Defines the pin number of the clock frequency signal.

MISO Port
Selects the port name of the MISO signal.

MISO Pin
Defines the pin number of the MISO signal.

MOSI Port
Selects the port name of the MOSI signal.

68

SPI Slave

MOSI Pin
Defines the pin number of the MOSI signal.

CS Port
Selects the port name of the chip-select signal.

CS Pin
Defines the pin number of the chip-select signal.

69

4 STM32 Target Support Library Component Reference

Timer

Purpose Generate trigger signals for the ADC start-of-conversion and the control task
using a general-purpose timer

Library STM32

Description

Task

ADC

Timer

ST

The Timer block configures the general-purpose timers TIM3 or TIM4, to gen-
erate an interrupt at the specified frequency. The timer interrupt can be used
to trigger the ADC start-of-conversion or the Control Task Trigger.

The exact timer frequency may not be achievable based on the system clock
frequency. The Frequency tolerance parameter allows automatically round-
ing to the closest achievable value when the exact timer frequency is un-
achievable.

Parameters Frequency
Defines the frequency of the timer in Hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired timer frequency is not achievable.

70

electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com

User Manual Version 3.4

The siMUlaTion plaTforM for
power elecTronic sysTeMs

p
lec

s U
ser M

anual Version 3.4

	Contents
	Quick Start
	Requirements
	Installing the Target Support Package
	Build and Deploy Generated Code
	Program the MCU from PLECS
	Program the MCU from STM32CubeIDE

	Start the External Mode

	Target Support Architecture
	Overview
	The Embedded Code Generation Workflow
	Control Task Execution
	Control Task Accuracy and PWM Frequency Tolerance
	Explicit and Implicit Trigger Definitions

	The Code Generation Project

	STM32 Coder Options
	STM32 Target Support Library Component Reference
	Analog In
	Analog In (Triggered)
	Base Task Load
	CAN Port
	CAN Receive
	CAN Transmit
	Control Task Trigger
	DAC
	Digital In
	Digital Out
	Override Probe
	Peak Current Controller
	Powerstage Protection
	Pulse Capture
	PWM
	Quadrature Encoder Counter (QEP)
	Read Probe
	SinCos
	SPI Master
	SPI Slave
	Timer

