

RT Box LaunchPad Interface

User Manual September 2019

How to Contact Plexim:

6	$+41 \ 44 \ 533 \ 51 \ 00$	Phone
	$+41 \ 44 \ 533 \ 51 \ 01$	Fax
	Plexim GmbH Technoparkstrasse 1 8005 Zurich Switzerland	Mail
@	info@plexim.com	Email
	http://www.plexim.com	Web

RT Box LaunchPad Interface

© 2018 by Plexim GmbH

PLECS is a registered trademark of Plexim GmbH. Other product or brand names are trademarks or registered trademarks of their respective holders.

Contents

Contents				
1	Introduction	1		
2	Interface Board Overview	3		
	LaunchPad Headers	6		
	Onboard Voltage Supply	7		
	Analog Output	8		
	Digital I/O	8		
3	Demo Application	9		
	Software Requirements	9		
	Loading the Firmware	10		
	Program the RT Box	11		
	Connecting the External Mode	13		
	RT Box Web Interface	14		
	Description of Demo Projects	15		
	MCU Reset and Boot of Control Application	15		
	Block Current Control of a BLDC Motor	16		
	Field Oriented Control of a PMSM	18		
	Current Control of a H-Bridge Buck Converter	20		
	Control of a Neutral-Point Clamped Solar Converter	22		

4	Appendix	25
	LAUNCHXL-F28069M Pin Map	26
	LAUNCHXL-F28377S Pin Map	29
	LAUNCHXL-F28379D Pin Map	32
	LAUNCHXL-F28027 Pin Map	35
	LAUNCHXL-F280049C Pin Map	37

Introduction

The PLECS RT Box is a powerful real-time simulator based on a 1 GHz Xilinx Zynq system on a chip (SOC). With its 64 digital and 32 analog I/O signals, the RT Box is well equipped for hardware-in-the-loop (HIL) testing as well as rapid control prototyping.

If employed for HIL testing the RT Box typically emulates the power stage of a power electronic system. The power stage could be a simple DC/DC converter, an AC drive system or a complex multi-level inverter system. The device under test (DUT) is the control hardware connected to the RT Box. In such a setup, the complete controller can be tested without the real power stage.

To simplify the connection of external hardware and to provide convenient access to the RT Box inputs and outputs, Plexim offers a set of RT Box accessories.

The **LaunchPad Interface** described in this document facilitates a simple connection of the RT Box with the LaunchPad and LaunchPad XL development kits from Texas Instruments. It enables the user to test control algorithms implemented on C2000 MCUs without developing own interface hardware. The pinout of the LaunchPad Interface board has been optimized for the following development kits:

- LaunchXL-F28069M
- LaunchXL-F28377S
- LaunchXL-F28379D
- LaunchXL-F28027

The LaunchPad Interface may also be used with other development boards compliant with the LaunchPad pinout.

2

Interface Board Overview

The LaunchPad Interface board facilitates the connection between a Launch-Pad from TI with a C2000 microcontroller and the RT Box. Fig. 2.1 shows the top view of the board without any LaunchPad attached.

Figure 2.1: Top view of RT Box LaunchPad Interface

Additionally, the board provides access to some of the analog outputs of the RT Box via BNC connectors and to unused digital inputs and outputs signals via shrouded pin headers. For simple status communication with the RT Box the board features four sliding switches and four LEDs.

Fig. 2.2 shows the top view of the board with a LaunchXL-F28069M attached.

Figure 2.2: RT Box LaunchPad Interface with LaunchXL-F28069M

Fig. 2.3 shows the top view of the board with a LaunchXL-F28027 attached.

Figure 2.3: RT Box LaunchPad Interface with LaunchXL-F28027

LaunchPad Headers

A LaunchPad must be attached to the Interface board using the corresponding pin headers. The LaunchPad will extend beyond the edge of the Interface board. Fig. 2.2 and 2.3 show the correct mounting position.

Tables 2.1	and 2.2	list th	e pin	assignments	of the	LaunchPad	headers	and	the
RT Box sig	gnals.								

RT Box	Hee	ader	RT Box	-	RT Box	Hec	ıder	RT Box
	JI	J3		-		J4	J2	
3.3 V	1	21		-	DI0	40	20	GND
	2	22	GND	-	DI1	39	19	DI6
DO0	3	23	AO0	-	DI2	38	18	DI7
D01	4	24	AO1	-	DI3	37	17	
DO2	5	25	AO2	-	DI4	36	16	DO25
	6	26	AO3	-	DI5	35	15	DI27
DI24	7	27	AO4	-	DO4	34	14	DO26
DI25	8	28	AO5	-	DO5	33	13	DO6
DI26	9	29	AO6	-		32	12	DO7
DO27	10	30	AO7	-		31	11	DO3

Table 2.1: LaunchPad header pins J1-J4

RT Box	Hec	ader	RT Box	RT	Box	Hea	ıder	F
	J5	J7				J 8	J6	
3.3 V	41	61		Ē	DI16	80	60	
	42	62	GND	Ē	DI17	79	59	
DO16	43	63	AO8	Ē	DI18	78	58	
DO17	44	64	AO9	Ē	DI19	77	57	
DO18	45	65	AO10	Ē	DI20	76	56	
	46	66	A011	Ē	DI21	75	55	
	47	67	AO12			74	54	
DO19	48	68	AO13			73	53	
	49	69	A014			72	52	
	50	70	AO15			71	51	

Table 2.2: LaunchPad header pins J5-J8

A more detailed table including the available processor functions at each pin for the supported LaunchPads can be found in the appendix.

Onboard Voltage Supply

As the LaunchPad is powered from the interface board no external power supply is required. The interface board contains a linear voltage regulator that converts the 5 V supplied by the RT Box down to 3.3 V required by the LaunchPad.

The pins labeled 5V at pin headers J1 and J5 of the interface board are supplied with 5 V generated by the TI launchpad. Therefore, a 5 V output at these pins is only available when a TI launchpad is present.

Both supply voltages 5V and 3.3V are accessible at a 3-pin header on the interface board if the user wants to power external circuits. The maximum load for both voltage levels combined is 1.5 A. When an external circuit requires a 5V supply it is recommended to draw the required power from the 3-pin

header on the interface board and not from the LaunchPad in order to minimize losses and component stress.

Analog Output

The interface board connects all 16 analog outputs from the RT Box to the LaunchPad headers. The lower 8 channels AO0...AO7 are also accessible at the BNC connectors. Each of the analog output channels is clamped with two Schottky diodes to 0 V and 3.3 V to protect the inputs of the MCU from damage by overvoltage.

To stabilize the analog voltages for the sample and hold capacitors inside the MCU, each channel is buffered with a 220 pF capacitor against ground.

Digital I/O

Not all of the digital inputs and outputs of the RT Box are connected to the LaunchPad. The unused digital inputs DI8...DI15 and the outputs DO8...DO15 are freely accessible at the shrouded headers on the lower side of interface board. The digital outputs DO28...DO31 are connected to four orange LEDs in the lower right corner of the board. The digital inputs DI28...DI31 can be set via four sliding switches.

All other digital inputs and outputs from the RT Box are connected to the LaunchPad headers. To protect the inputs of the MCU from voltages greater than 3.3 V, the corresponding outputs of the RT Box are buffered with bus transceivers.

DO25 is connected to the MCU reset pin via the RST jumper. If the jumper is set a low-level output at DO25 will reset the MCU. Do not set this jumper unless you wish to use this feature.

3

Demo Application

The LaunchPad interface ships with a preprogrammed LaunchXL-F28069M. The demo application running on the C2000 is capable of performing a realtime control of four different demo models.

- Block Current Control of a BLDC Motor
- Field Oriented Control of a PMSM
- Current Control of a H-Bridge Buck Converter
- Control of a Neutral-Point Clamped Solar Converter

The demo package containing the embedded software and the model can be downloaded from the Plexim website at www.plexim.com.

Software Requirements

The PLECS model can be executed on Windows, MAC or Linux machines with the following software installed:

- PLECS Standalone (version 4.0.4 or higher)
- PLECS Standalone Coder

However, the control preprogrammed for the TI controlCARD can only be flashed or updated on a Windows machine (32-bit or 64-bit) with the following additional software installed:

• C2Prog – Download from www.codeskin.com (only required to reflash the MCU).

A license is required to run PLECS and use the code generation feature. You can request this license from Plexim at www.plexim.com.

Loading the Firmware

The control required to run the demo models is preprogrammed on the TI Launchpad and is ready to use out of the box. However, the following section shows how to program the MCU to reflash the demo application or perform an update. Otherwise, you can simply skip this section. Please note that this section is applicable for Windows machines only.

Switch off the RT Box. Make sure that all jumpers on the LaunchPad, except JP6, are closed and all dip switches are pointing away from the DSP. Open the RST jumper located on the interface board.

Connect the JTAG/SCI USB port of the LaunchPad to your PC. Open the Windows Device Manager and confirm that TI Debug Probes are listed.

You may have to install the FTDI drivers if the port is not enumerated.

Figure 3.1: TI debug probes listed in device manager

The pre-compiled executable E1WMS_launchpad_28069.ehx located in the demo package is used to begin. In C2Prog, select the file E1-WMS_launchpad_28069.ehx and configure the port to XDS100v2.

CodeSkin Chip Programmer	
File Boot Tools Help	
C2Prog v1.7	by codeskin.com
File: 2000\elwms-launchpad\demo\28069\ElWMS_launchpad	d_28069.ehx Select File
Programming Configuration	*
Port:	
С serial С CAN С ЛАС С USB	Configure Ports
XDS100v2	Program
J.	

Figure 3.2: Flashing the LaunchPad

Click the **Program** button.

Once the reflashing completes, disconnect the USB cable and toggle dip switch 3 which should then be pointing towards the DSP. Open JP1 and JP2 on the LaunchPad and close the RST jumper on the interface board. The LaunchPad is now ready for operation.

Program the RT Box

This section describes the process of downloading a demo model to the RT Box. The BLDC model is used for explanation, but all other examples are programmed in a similar way. For general information about the RT Box and a manual how to get started please also refer to the RT Box documentation available on the Plexim website.

Before you begin, verify the following hardware configuration:

- JP3, JP4, JP5 and JP7 on the LaunchPad are closed.
- JP1, JP2 and JP6 on the LaunchPad are open.
- Dip switches 1 and 2 on the LaunchPad are pointing away from the DSP.
- Dip switch 3 on the LaunchPad is pointing towards the DSP.
- The *RST* jumper on the LaunchPad Interface is closed.

Open the model BLDC_launchpad_hil.plecs located in the demo package. Familiarize yourself with the implementation of the subsystem BLDC and Inverter Stage. Go to the **Coder Options**. Select **BLDC and Inverter Stage** and switch to the **Target** tab.

Coder Options: BLDC_launchpad_hil	<u>×</u>
System	General Parameter Inlining Target External Mode
BLDC_launchpad_hil BLDC and Inverter Stage	Target: PLECS RT Box 1
	Target device: rtbox-538.local.
	General Interconnect
	Analog input voltage range: -10 10 V
	Analog output voltage range: 0 5 V
	Digital output voltage level: 3.3 V
	Analog input sampling: Minimize latency
	Sampling delay (s): 0
	Verrun limit
I	Build
	Accept Revert Close Help

Figure 3.3: Programming the RT Box with the BLDC Model

Select your **Target Device** from the drop-down list and click **Accept** and then **Build**. Your model is now compiled and downloaded to the RT Box automatically. Verify that the Blue **Running** LED on the RT Box is illuminated.

Connecting the External Mode

The External Mode enables access to the real-time simulation executed on the RT Box. It can be used to visualize all simulation signals via the model scopes.

Switch to the tab **External Mode** in the Coder Options and click **Connect** to start communication between PLECS and the model running on the RT Box. **Activate autotriggering** via the appropriate button.

Target device rtbox-538.local. Connect Trigger controls Manual trigger Activate autotriggering Rate [Hz]: H
rtbox-538.local.
Trigger controls Manual trigger Activate autotriggering Rate [Hz]: Trigger channel: Off Sensitivity
Manual trigger Activate autotriggering Rate [Hz]: H
Activate autotriggering Rate [Hz]: H
Trigger channel: Off
Constituitur Disiga adap
Sensitivity. Initiality cuge
Trigger level: 0.0532423
Trigger delay [steps]: 0
Sampling
Number of samples: 8192
Decimation: 1
Build

Figure 3.4: Connecting to the BLDC Model via the External Mode

Set Switch DI-29 to high to enable the drive control. Open the Scope **Currents** in the BLDC model and analyze the control behavior.

Note Switch *DI-28* can be used to change the current reference of the control system.

RT Box Web Interface

The Web Interface provides information about the model running on the RT box as well as additional diagnostic options. It can be accessed by clicking on the 💭 icon under the *Target* or the *External Mode* tabs of the Coder Options dialog.

📕 RT Box Web Interface: rtbox-538.local.	
PLECS RT Box 1	^
Application Front panel Rear panel Diagnostics Into	
Model	
Modelname: BLDC_and_Inverter_Stage Sample time: S µs	
Simulation	
Processor load:	
Current cycle time: 2.59 µs	
Maximum cycle time: 2.90 µs Reset Maximum	
Executable	
Browse	
😠 Start automatically after upload	
Delay start until first scope trigger	
Start Stop	

Figure 3.5: RT Box Web Interface

The processor load statistic reveals information about the time needed to calculate the model and therefore serves as a convenient tool to validate the chosen step size. Do not overload the processor, maintain a safety margin. **Note** A model under actuation requires a higher processing time than an idle model. Additional processor load is required using the external mode.

Description of Demo Projects

This section provides an overview for the different demo models and their external signal availability.

MCU Reset and Boot of Control Application

The embedded application in the package can be used to control all four demo models. During boot, it automatically recognizes which model is actually running on the RT Box and initializes the corresponding I/O setup and control algorithm.

Each time a new model is loaded to the RT Box, the MCU is reset via DO25. The model on the RT Box is represented via the Model ID using DO22, DO17 and DO16. This is common for all models including the features described below.

A disable switching option in active high logic is implemented via DI22. LED 29 indicates the switching signal is active. LED 31 blinks at a rate of 1 Hz while the model is running. Switch 29 can be used to activate and restart the controls. Switch 28 changes the reference value of the control loop. This information is forwarded to the MCU via DO4 and DO18 respectively.

Note Switch DI29 of interface board enables or disables the MCU drive.

Block Current Control of a BLDC Motor

This project is based on a basic block current control application, with the embedded code controlling the switches of a three-phase inverter powering a brushless DC machine.

Figure 3.6: BLDC current control demo model

The model outputs three analog voltages and mimics the shunt current measurements on a TI Boost XL DRV8301 board. The rotor position is sensed using Hall signals via three digital outputs. The control algorithm generates six PWM signals controlling the inverter switches compliant to the TI Boost XL DRV8301 board. Table 3.1 shows the detailed pin assignment for this demo model.

Feature	RT Box Channel	LaunchPad Pin
Ia	AO12	J7 67
Ib	AO13	J7 68
Ic	AO14	J7 69
Hall A	DO2	J1 5
Hall B	DO6	J2 13
Hall C	DO7	J2 12
PWM A H	DI16	J8 80
PWM A L	DI17	J8 79
PWM B H	DI18	J8 78
PWM B L	DI19	J8 77
PWM C H	DI20	J8 76
PWM C L	DI21	J8 75

Table 3.1: BLDC I/O

Field Oriented Control of a PMSM

The project is based on a basic Field Oriented Control (FOC) application, with the embedded code controlling the switches of a three-phase inverter powering a permanent magnet (PM) machine.

Figure 3.7: Field oriented control demo model

The model outputs analog voltages for the stator current measurements, the dc link voltage and the electrical angle. The stator current voltages as well as the dc link voltage can also be accessed directly via the BNC connectors. The rotor position and speed is made available using a quadrature encoder module via three digital outputs. The control algorithm generates six PWM signals controlling the inverter switches. Table 3.2 shows the detailed pin assignment for this demo model.

Feature	RT Box Channel	LaunchPad Pin
Isa	AO0	J3 23
Isb	AO1	J3 24
Isc	AO2	J3 25
Vdc	AO3	J3 26
θ_e	AO4	J3 27
Vdc	A011	J7 66
Iu	AO12	J7 67
Iv	AO13	J7 68
Iw	AO14	J7 69
ENC1A	DO6	J2 13
ENC1B	DO7	J2 12
ENC1I	DO23	J6 52
PWM A H	DI16	J8 80
PWM A L	DI17	J8 79
PWM B H	DI18	J8 78
PWM B L	DI19	J8 77
PWM C H	DI20	J8 76
PWM C L	DI21	J8 75

Table 3.2: FOC I/O

Current Control of a H-Bridge Buck Converter

The project is based on a basic current control application, with the embedded code controlling the switches of a h-bridge converter powering an ohmicinductive load.

Figure 3.8: H-Bridge type buck converter control demo model

The model outputs analog voltages for the the positive and negative load currents as well as the dc link voltage. The load current measurement voltage can also be accessed directly via the BNC connectors at AO4. The control algorithm generates four PWM signals controlling the h-bridge switches. Table 3.3 shows the detailed pin assignment for this demo model.

Feature	RT Box Channel	LaunchPad Pin
-Io	AO4	J3 27
Vdc	AO11	J7 66
-Io	AO12	J7 67
Io	AO13	J7 68
PWM A H	DI16	J8 80
PWM A L	DI17	J8 79
PWM B H	DI18	J8 78
PWM B L	DI19	J8 77

Table 3.3: Buck I/O

Control of a Neutral-Point Clamped Solar Converter

The project is based on a grid-tied solar inverter application, using a threelevel neutral-point clamped (NPC) inverter. The embedded control algorithms implement the following functionality:

- Phase-locked loop (PLL) for sensing the grid frequency and phase angle.
- Synchronous frame current regulator for accurate control of active and reactive power.
- Space vector pulse width modulation (SVPWM) for achieving minimal output current distortion.
- Active neutral-point balancing.
- Islanding detection based on a slip mode frequency shift algorithm.
- System monitoring and fault handling finite state machines (FSM).

The implementation is multithreaded with tasks executing at both 10 kHz and 100 Hz.

Figure 3.9: NPC inverter control demo model

The model outputs analog voltages for the load current measurements, the dc link voltage as well as the mid and grid voltages. The mid and grid voltages can be accessed directly via the BNC connectors. The embedded control algorithm generates 12 PWM signals controlling the switches of the neutral point clamped multilevel inverter. Table 3.4 shows the detailed pin assignment for this demo model.

Feature	RT Box Channel	LaunchPad Pin
Vmid	AO3	J3 26
Vgridu	AO4	J3 27
Vgridv	AO5	J3 28
Vgridw	AO6	J3 29
Vdc	AO11	J7 66
Iu	AO12	J7 67
Iv	AO13	J7 68
Iw	AO14	J7 69
Qu1	DI0	J4 40
Qu2	DI2	J4 38
Qu3	DI1	J4 39
Qu4	DI3	J4 37
Qv1	DI4	J4 36
Qv2	DI16	J8 80
Qv3	DI5	J4 35
Qv4	DI17	J8 79
Qw1	DI18	J8 78
Qw2	DI20	J8 76
Qw3	DI19	J8 77
Qw4	DI21	J8 75

Table 3.4: NPC Solar I/O

Appendix

The tables on the next pages provide more detailed information on the connectivity of the LaunchPad Interface. For each LaunchPad, the RT Box I/O is shown beside the header pins and the processor peripherals available at those pins. Note that only peripherals are listed which are compliant with the type and direction of the RT Box I/O.

LAUNCHXL-F28069M Pin Map

Function	RT Box			RT Box	Function
		JI	J3		
	3.3V	1	21		
		2	22	GND	
J1.3	DO0	3	23	AO0	ADCINA7
J1.4	DO1	4	24	AO1	ADCINB1
GPIO12, TZ1	DO2	5	25	AO2	ADCINA2
		6	26	AO3	ADCINB2
GPIO18, SPICLKA	DI24	7	27	AO4	ADCINA0
GPIO22, EQEP1S	DI25	8	28	AO5	ADCINB0
GPIO33, EPWMSYNCO, ADCSOCBO	DI26	9	29	AO6	ADCINA1
GPIO32, EPWMSYNCI	DO27	10	30	AO7	NC
		J5	J7		
	3.3V	41	61		
		42	62	GND	
J7.3	DO16	43	63	AO8	ADCINB7
J7.4	DO17	44	64	AO9	ADCINB4
GPIO20, EQEP1A	DO18	45	65	AO10	ADCINA5
		46	66	A011	ADCINB5
		47	67	AO12	ADCINA3
GPIO21, EQEP1B	DO19	48	68	AO13	ADCINB3
		49	69	A014	ADCINA4
		50	70	AO15	NC

Function	RT Box			RT Box	Function
----------	--------	--	--	--------	----------

Function	RT Box			RT Box	Function
		J4	J2		
GPIO0, EPWM1A	DI0	40	20	GND	
GPIO1, EPWM1B	DI1	39	19	DI6	GPIO19, SPISTEA
GPIO2, EPWM2A	DI2	38	18	DI7	GPIO44, EPWM7B
GPIO3, EPWM2B	DI3	37	17		
GPIO4, EPWM3A	DI4	36	16	DO25	RESET
GPIO5, EPWM3B, SPISIMOA	DI5	35	15	DI27	GPIO16, SPISIMOA
GPIO13, TZ2, SPISOMIB	DO4	34	14	DO26	GPIO17, SPISOMIA, TZ3
NC	DO5	33	13	DO6	GPIO50, EQEP1A, TZ1
		32	12	DO7	GPIO51, EQEP1B, TZ2
		31	11	DO3	GPIO55, SPISOMIA, EQEP2B
		J8	J6		
GPIO6, EPWM4A, EPWM- SYNCO	DI16	80	60	GND	
GPIO7, EPWM4B	DI17	79	59	DI22	GPIO27, SPISTEB
GPIO8, EPWM5A, ADCSO- CAO	DI18	78	58	DI23	GPIO26, SPICLKB
GPIO9, EPWM5B	DI19	77	57		
GPIO10, EPWM6A, ADC- SOCBO	DI20	76	56		
GPIO11, EPWM6B	DI21	75	55	DO20	GPIO24, EQEP2A

Table 4.1: LAUNCHXL-F28069M pin map for J1, J3, J5 and J7

Function	RT Box			RT Box	Function
		74	54	DO21	GPIO25, EQEP2B
		73	53	DO22	GPIO52, EQEP1S, TZ3
		72	52	DO23	GPIO53, EQEP1I
		71	51	DO24	GPIO56, EQEP2I

Table 4.2: LAUNCHXL-F28069M pin map for J2, J4, J6 and J8

LAUNCHXL-F28377S Pin Map

Function	RT Box			RT Box	Function
		JI	J3		
	3.3V	1	21		
		2	22	GND	
GPIO90	DO0	3	23	AO0	ADCIN14
GPIO89	DO1	4	24	AO1	ADCINB1
GPIO41	DO2	5	25	AO2	ADCINB4
		6	26	AO3	ADCINB2
GPIO60, SPICLKA, OUT- XBAR3	DI24	7	27	AO4	ADCINA0
GPIO61, SPISTEA, OUT- XBAR4	DI25	8	28	AO5	ADCINB0
GPIO43	DI26	9	29	AO6	ADCINA1
NC	DO27	10	30	AO7	NC
		J5	J7		
	3.3V	41	61		
		42	62	GND	
GPIO87	DO16	43	63	AO8	ADCIN15
GPIO86	DO17	44	64	AO9	ADCINA2
NC	DO18	45	65	AO10	ADCINA5
		46	66	A011	ADCINB5
		47	67	AO12	ADCINA3
NC	DO19	48	68	AO13	ADCINB3
		49	69	AO14	ADCINA4

Function	RT Box			RT Box	Function
		50	70	AO15	NC

Table 4.3: LAUNCHXL-F28377 pin map for J1, J3, J5 and J7

Function	RT Box			RT Box	Function
		J4	J2		
GPIO12, EPWM7A	DI0	40	20	GND	
GPIO13, EPWM7B	DI1	39	19	DI6	GPIO4, EPWM3A, OUT- XBAR3
GPIO14, EPWM8A, OUT- XBAR3	DI2	38	18	DI7	GPIO62
GPIO15, EPWM8B, OUT- XBAR4	DI3	37	17		
GPIO16, EPWM9A, SPISI- MOA, OUTXBAR7	DI4	36	16	DO25	RESET
GPIO17, EPWM9B, OUT- XBAR8	DI5	35	15	DI27	GPIO58, SPICLKB, OUT- XBAR1, SPISIMOA
GPIO20, EQEP1A, SD1_D3	DO4	34	14	DO26	GPIO59, SD2_C2, SPISOMIA
GPIO21, EQEP1B, SD1_C3	DO5	33	13	DO6	GPIO72
		32	12	DO7	GPIO73
		31	11	DO3	GPIO78, EQEP2A
		J 8	J6		
GPIO2, EPWM2A, OUT- XBAR1	DI16	80	60	GND	
GPIO3, EPWM2B, OUT- XBAR2	DI17	79	59	DI22	GPIO91
GPIO10, EPWM6A	DI18	78	58	DI23	NC

Function	RT Box			RT Box	Function
GPIO11, EPWM6B, OUT- XBAR7	DI19	77	57		
GPIO18, SPICLKA, EPWM10A	DI20	76	56		
GPIO19, SPISTEA, EPWM10B	DI21	75	55	DO20	GPIO63, EQEP3B, SD2_C4
		74	54	DO21	GPIO64, EQEP3S, SPISOMIB
		73	53	DO22	GPIO99, EQEP1I
		72	52	DO23	GPIO92
		71	51	DO24	NC

Table 4.4: LAUNCHXL-F28377 pin map for J2, J4, J6 and J8

LAUNCHXL-F28379D Pin Map

Function	RT Box			RT Box	Function
		JI	J3		
	3.3V	1	21		
		2	22	GND	
GPIO19, SD1_C2	DO0	3	23	AO0	ADCINA14, CMPIN4P
GPIO18, SD1_D2	DO1	4	24	AO1	ADCINC3, CMPIN6N
GPIO67	DO2	5	25	AO2	ADCINB3, CMPIN3N
		6	26	AO3	ADCINA3, CMPIN1N
GPIO60, SPICLKA, OUT- XBAR3, SPISIMOB	DI24	7	27	AO4	ADCINC2, CMPIN6P
GPIO22, EPWM12A, SPI- CLKB	DI25	8	28	AO5	ADCINB2, CMPIN3P
GPIO105	DI26	9	29	AO6	ADCINA2, CMPIN1P
GPIO104, EQEP3A	DO27	10	30	AO7	ADCINA0
		J5	J7		
	3.3V	41	61		
		42	62	GND	
GPIO139	DO16	43	63	AO8	ADCIN15, CMPIN4N
GPIO56, EQEP2S, SD2_D1	DO17	44	64	AO9	ADCINC5, CMPIN5N
GPIO97, EQEP1B	DO18	45	65	AO10	ADCINB5
		46	66	A011	ADCINA5, CMPIN2N
		47	67	AO12	ADCINC4, CMPIN5P
GPIO52, EQEP1S, SD1_D3	DO19	48	68	AO13	ADCINB4
		49	69	AO14	ADCINA4, CMPIN2P

Function	RT Box			RT Box	Function
		50	70	AO15	ADCINA1

Table 4.5: LAUNCHXL-F28379D pin map for J1, J3, J5 and J7

Function	RT Box			RT Box	Function
		J4	J2		
GPIO0, EPWM1A	DI0	40	20	GND	
GPIO1, EPWM1B	DI1	39	19	DI6	GPIO61, SPISTEA, OUT- XBAR4
GPIO2, EPWM2A, OUT- XBAR1	DI2	38	18	DI7	GPIO123
GPIO3, EPWM2B, OUT- XBAR2	DI3	37	17		
GPIO4, EPWM3A, OUT- XBAR3	DI4	36	16	DO25	RESET
GPIO5, EPWM3B, OUT- XBAR3	DI5	35	15	DI27	GPIO58, SPICLKB, SPISI- MOA, OUTXBAR1
GPIO24, EQEP2A, SD2_D1	DO4	34	14	DO26	GPIO59, SPISOMIA, SD2_C2
GPIO16, SD1_D1	DO5	33	13	DO6	GPIO124, SD1_D2
		32	12	DO7	GPIO125, SD1_C2
		31	11	DO3	GPIO29, EQEP3B, SD2_C3
		J 8	J6		
GPIO6, EPWM4A, OUT- XBAR4	DI16	80	60	GND	
GPIO7, EPWM4B, OUT- XBAR5	DI17	79	59	DI22	GPIO66, SPISTEB

Function	RT Box			RT Box	Function
GPIO8, EPWM5A, ADCSO- CAO	DI18	78	58	DI23	GPIO131
GPIO9, EPWM5B, OUT- XBAR6	DI19	77	57		
GPIO10, EPWM6A, ADC- SOCBO	DI20	76	56		
GPIO11, EPWM6B, OUT- XBAR 7	DI21	75	55	DO20	GPIO63, EQEP3B, SD2_C4
		74	54	DO21	GPIO64, EQEP3S, SPISOMIB
		73	53	DO22	GPIO26, EQEP2I, SD2_D2
		72	52	DO23	GPIO27, EQEP2S, SD2_C2
		71	51	DO24	GPIO25, EQEP2B, SPI- SOMIB, SD2_C1

Table 4.6: LAUNCHXL-F28379D pin map for J2, J4, J6 and J8

LAUNCHXL-F28027 Pin Map

Function	RT Box			RT Box	Function
		J4/J6	J2/J2		
GPIO0, EPWM1A	DI0	40/1	20/1	GND	
GPIO1, EPWM1B	DI1	39/2	19/2	DI6	GPIO19, SPISTEA
GPIO2, EPWM2A	DI2	38/3	18/3	DI7	GPIO12
GPIO3, EPWM2B	DI3	37/4	17/4		
GPIO4, EPWM3A	DI4	36/5	16/5	DO25	RESET
GPIO5, EPWM3B	DI5	35/6	15/6	DI27	GPIO16/32, SPISIMOA(16), ADCSOCA(32)
GPIO16/32, EPWM- SYNCI(32), TZ2(16)	DO4	34/7	14/7	DO26	GPIO17/33, SPISOMIA(17), TZ3(17)
GPIO17/33, SPISOMIA(17), TZ3(17)	DO5	33/8	13/8	DO6	GPIO6, EPWMSYNCI
		32/9	12/9	DO7	GPIO7
		31/10	11/10	DO3	NC
		IJ	J3/J5		
	3.3V	1	21/1		
		2	22/2	GND	
GPIO28, TZ2	DO0	3	23/3	AO0	ADCINA7
GPIO29, TZ3	DO1	4	24/4	AO1	ADCINA3
GPIO34	DO2	5	25/5	AO2	ADCINA1
		6	26/6	AO3	ADCINA0
GPIO18, SPICLK	DI24	7	27/7	AO4	ADCINB1
	DI25	8	28/8	AO5	ADCINB3
	DI26	9	29/9	AO6	ADCINB7

	DO27	10	30/10	AO7	NC
--	------	----	-------	-----	----

Table 4.7: LAUNCHXL-F28027 pin map

LAUNCHXL-F280049C Pin Map

Function	RT Box			RT Box	Function
		JI	J3		
	3.3V	1	21		
		2	22	GND	
GPIO13	DO0	3	23	AO0	ADCINA5
GPIO40	DO1	4	24	AO1	ADCINB0
	DO2	5	25	AO2	ADCINC2
		6	26	AO3	ADCINB1
GPIO56, SPICLKA	DI24	7	27	AO4	ADCINB2
ADCINC4	DI25	8	28	AO5	ADCINC0
GPIO37, EQEP1B	DI26	9	29	AO6	ADCINA9
GPIO35, EQEP1A	DO27	10	30	AO7	ADCINA1
		J5	J7		
	3.3V	41	61		
		42	62	GND	
GPIO28, EQEP1A	DO16	43	63	AO8	ADCINA6
GPIO29, EQEP1B	DO17	44	64	AO9	ADCINB6
ADCINB4	DO18	45	65	AO10	ADCINC14
		46	66	A011	ADCINC1
		47	67	AO12	ADCINC3
ADCINA8	DO19	48	68	AO13	ADCINC5
		49	69	A014	ADCINA3
		50	70	AO15	ADCINA0

4

Function	RT Box			RT Box	Function
		J4	J2		
GPIO10, EPWM6A, EQEP1A	DI0	40	20	GND	
GPIO11, EPWM6B, EQEP1B	DI1	39	19	DI6	GPIO57, SPISTEA
GPIO8, EPWM5A	DI2	38	18	DI7	
GPIO9, EPWM5B, EQEP1I, OUTXBAR6	DI3	37	17		
GPIO4, EPWM3A	DI4	36	16	DO25	RESET
GPIO5, EPWM3B, OUT- XBAR3	DI5	35	15	DI27	GPIO16, SPISIMOA
GPIO58, OUTXBAR1	DO4	34	14	DO26	GPIO17, SPISOMIA
GPIO30, OUTXBAR7	DO5	33	13	DO6	GPIO39
		32	12	DO7	GPIO23
		31	11	DO3	GPIO59, EQEP1I
		36	J6		
GPIO0, EPWM1A	DI16	80	60	GND	
GPIO1, EPWM1B	DI17	79	59	DI22	GPIO27, SPISTEB
GPIO6, EPWM4A	DI18	78	58	DI23	
GPIO7, EPWM4B, OUT- XBAR5	DI19	77	57		
GPIO2, EPWM2A	DI20	76	56		
GPIO3, EPWM2B, OUT- XBAR2	DI21	75	55	DO20	GPIO24, SPISIMOB
		74	54	DO21	GPIO31, SPISOMIB

Table 4.8: LAUNCHXL-F280049C pin map for J1, J3, J5 and J7

Function	RT Box			RT Box	Function
		73	53	DO22	GPIO33, SPISTEB
		72	52	DO23	GPIO34
		71	51	DO24	GPIO12

Table 4.9: LAUNCHXL-F280049C pin map for J2, J4, J6 and J8

Plexim GmbH info@plexim.com www.plexim.com