
electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com
p

lec
s U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

User Manual Version 4.3

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

PLECS User Manual

© 2002–2019 by Plexim GmbH

The software PLECS described in this manual is furnished under a license
agreement. The software may be used or copied only under the terms of the
license agreement. No part of this manual may be photocopied or reproduced
in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii

Before You Begin 1
Installing PLECS Blockset . 1

Installation on Microsoft Windows 1

Installation on macOS . 1

Installation on Linux . 2

Licensing . 2

Configuring the MATLAB Search Path 3

Configuring PLECS . 3

Installing Different Versions of PLECS Blockset in Parallel 4

Uninstalling PLECS Blockset . 4

Installing PLECS Standalone . 5

Installation on Microsoft Windows 5

Installation on macOS . 5

Installation on Linux . 5

Licensing . 6

License File Location . 6

Network Licensing . 7

What’s New in Version 4.3 . 8

Major New Features . 8

Further Enhancements . 8

Contents

1 Getting Started 9
Getting Started with PLECS Blockset . 9

A Simple Passive Network . 9

Buck Converter . 15

Getting Started with PLECS Standalone 18

A Simple Passive Network . 18

Buck Converter . 22

2 How PLECS Works 25
Modeling Dynamic Systems . 25

System Equations . 26

Block Diagrams . 26

Physical Models . 27

Simulating Dynamic Systems . 27

Model Initialization . 28

Model Execution . 31

Fixed-Step Simulation . 33

Sampled Data Systems . 36

Sample Times . 36

Sample Time Inheritance . 37

Multirate Systems . 38

Troubleshooting . 38

3 Using PLECS 41
Configuring PLECS . 41

General . 41

Libraries . 42

Thermal . 43

Scope Colors . 43

Update . 43

Coder . 44

iv

Contents

Installing Extensions . 45

Creating a New Circuit with PLECS Blockset 46

Customizing the Circuit Block . 47

Using the Library Browser . 48

Components . 50

Specifying Component Parameters 50

Displaying Parameters in the Schematic 51

Changing Parameters of Multiple Components 51

Changing Parameters During a Simulation 51

Changing Component Names . 52

Changing the Orientation of Components 52

Getting Component Help . 52

Libraries . 53

Creating a New Library in PLECS Blockset 53

Creating a New Library in PLECS Standalone 53

Creating a Library Reference . 53

Updating a Library Reference . 54

Breaking a Library Reference . 54

Connections . 55

Signal Connections and Physical Connections 55

Creating Connections . 55

Creating Branches . 55

Automatic Creation of Connections 56

Editing Connections . 57

Annotations . 57

Subsystems . 58

Creating a Subsystem by Adding the Subsystem Block 58

Creating a Subsystem by Grouping Existing Blocks 58

Arranging Subsystem Terminals . 59

Resizing a Subsystem Block . 59

Placing the Subsystem Label . 60

v

Contents

Masking Subsystems . 61

Mask Icon . 61

Mask Dialog . 66

Mask Workspace . 70

Mask Probe Signals . 72

Mask Documentation . 73

Unprotecting Masked Subsystems 74

Getting Started with Lua . 74

Circuit Browser . 79

Viewing Options . 80

PLECS Probe . 82

Copying a Probe . 83

Assertions . 85

Assertion Blocks . 86

Component Assertions . 86

Locating Assertions . 87

Controlling Access to Circuits and Subsystems 88

Encrypting Circuits and Subsystems 88

Exporting Circuits for the PLECS Viewer 89

Exporting Schematics . 90

Using the PLECS Scope . 91

Getting Started . 91

Zoom Operations . 92

Scrolling . 93

Y-Axis Auto-Scaling . 93

Changing Curve Properties . 94

Spreading Signals . 94

Cursors . 94

Fourier Analysis . 96

Saving a View . 96

Adding Traces . 96

vi

Contents

Saving and Loading Trace Data . 96

Scope Parameters . 97

Printing and Exporting . 97

Using the Fourier Analysis . 98

Calculation Parameters . 98

Display Parameters . 99

Zoom, Export and Print . 100

Calculation of the Fourier coefficients 100

Using the XY Plot . 101

Time Range Window . 101

Zoom, Save View, Export and Print 102

Simulation Parameters . 103

PLECS Blockset Parameters . 103

PLECS Standalone Parameters . 107

4 Thermal Modeling 115
Heat Sink Concept . 115

Implementation . 116

Thermal Loss Dissipation . 116

Semiconductor Losses . 116

Ohmic Losses . 120

Heat Sinks and Subsystems . 120

Temperature Initialization . 121

Thermal Description Parameter . 123

Assigning Thermal Data Sheets . 123

Using Reference Variables . 123

Thermal Library . 126

Library Structure . 126

Global and Local Data Sheets . 126

Creating New Data Sheets . 127

Browsing the Thermal Library . 127

vii

Contents

Thermal Editor . 128

Editing Switching Losses . 129

Editing Conduction Losses . 130

Editing the Thermal Equivalent Circuit 131

Adding Custom Variables . 132

Adding Custom Lookup Tables . 133

Editing Lookup Tables . 134

Importing Data from Graphical Datasheets 136

Semiconductor Loss Specification . 141

Single Semiconductor Switch Losses 141

Diode Losses . 141

Losses of Semiconductor Switch with Diode 142

5 Magnetic Modeling 145

Equivalent circuits for magnetic components 145

Coupled inductors . 146

Reluctance-resistance analogy . 146

Permeance-capacitance analogy . 148

Magnetic Circuit Domain in PLECS . 149

Modeling Non-Linear Magnetic Material 150

Saturation Curves for Soft-Magnetic Material 151

6 Mechanical Modeling 153

Flanges and Connections . 154

Force/Torque Flows and Sign Conventions 154

Positions and Angles . 155

Initial Conditions . 155

Angle Wrapping . 156

Ideal Clutches . 156

Inelastic Collisions . 157

viii

Contents

7 Analysis Tools 161
Steady-State Analysis . 161

Algorithm . 161

Fast Jacobian Calculation for Thermal States 162

Non-periodic Case . 163

Limitations . 163

Reference . 163

AC Analysis . 164

Impulse Response Analysis . 164

Algorithm . 164

Compensation for Discrete Pulse . 165

Reference . 165

Multitone Analysis . 166

Algorithm . 166

Remarks . 167

References . 167

Usage in PLECS Standalone . 168

Steady-State Analysis . 168

AC Sweep . 170

Impulse Response Analysis . 171

Multitone Analysis . 171

Extraction of State-Space Matrices 172

Application Example . 173

Usage in PLECS Blockset . 176

Steady-State Analysis . 176

AC Sweep / Loop Gain Analysis . 178

Impulse Response Analysis . 181

Multitone / Loop Gain Analysis . 183

Extraction of State-Space Matrices 184

Application Example . 185

ix

Contents

8 C-Scripts 195
How C-Scripts Work . 195

C-Script Functions . 196
Modeling Discontinuities . 198
Sample Time . 200
User Parameters . 202
Runtime Checks . 203

C-Script Examples . 203
A Simple Function – Times Two . 204
Discrete States – Sampled Delay . 204
Continuous States – Integrator . 205
Event Handling – Wrapping Integrator 205
Piecewise Smooth Functions – Saturation 206
Multiple Sample Times – Turn-on Delay 208

C-Script Macros . 210
Deprecated Macros . 213

9 State Machines 215
Working with State Machines . 216

Working with States . 217
Working with Transitions . 218
Working with Junctions . 220
Working with Annotations . 220
State Machine Configuration . 221

State Machine Execution . 225
Transition Evaluation . 225
Trigger Types . 226
Trigger Lifetime . 227
Execution of Hierarchical State Machines 228

State Machine Examples . 229
Oven Control . 229
Constant On-Time Control . 231

x

Contents

10 Simulation Scripts 233

Command Line Interface in PLECS Blockset 233

Simulation Scripts in PLECS Standalone 239

Overview of PLECS Scripting Extensions 240

Example Script . 246

XML-RPC Interface in PLECS Standalone 247

Establishing an XML-RPC Connection to PLECS 247

Overview of XML-RPC Commands 247

Example Script . 250

Scripted Simulation and Analysis Options 251

11 Code Generation 257

Code Generation for Physical Systems . 257

Reducing the Code Size . 258

Maximum Number of Switches . 258

Handling Naturally Commutated Devices 258

Data Types . 261

Unsupported Components . 263

Code Generation with PLECS Standalone 264

Generating Code . 264

Simulating a Subsystem in CodeGen Mode 268

Code Generation with PLECS Blockset 269

Standalone Code Generation . 269

Integration with Simulink Coder . 269

Simulink Coder Options . 269

Code Generation Targets . 270

Real-Time Target . 271

Rapid Simulation Target . 271

xi

Contents

12 Processor-in-the-Loop 275
Motivation . 275

How PIL Works . 276

PIL Modes . 278

Configuring PLECS for PIL . 279

Target Manager . 279

Communication Links . 280

PIL Block . 282

13 Components by Category 287
System . 287

Assertions . 288

Control . 288

Sources . 288

Math . 289

Continuous . 289

Delays . 290

Discontinuous . 290

Discrete . 290

Filters . 291

Functions & Tables . 291

Logical . 292

Modulators . 292

Transformations . 293

State Machine . 293

Small Signal Analysis . 294

Electrical . 294

Sources . 294

Meters . 294

Passive Components . 294

Power Semiconductors . 295

xii

Contents

Power Modules . 296

Switches . 297

Transformers . 297

Machines . 298

Converters . 299

Electronics . 299

Model Settings . 299

Thermal . 299

Magnetic . 300

Mechanical . 301

Translational . 301

Rotational . 302

Additional Simulink Blocks . 303

14 Component Reference 305
1D Look-Up Table . 306

2D Look-Up Table . 308

2-Pulse Generator . 309

3D Look-Up Table . 310

3-Phase Overmodulation . 312

6-Pulse Generator . 313

Abs . 314

Algebraic Constraint . 315

Ambient Temperature . 316

Air Gap . 317

Ammeter . 318

Angle Sensor . 319

Assert Dynamic Lower Limit . 320

Assert Dynamic Range . 321

Assert Dynamic Upper Limit . 322

Assertion . 323

xiii

Contents

Assert Lower Limit . 324

Assert Range . 325

Assert Upper Limit . 326

Blanking Time . 327

Blanking Time (3-Level) . 328

Breaker . 329

Brushless DC Machine . 330

Brushless DC Machine (Simple) . 333

C-Script . 337

Capacitor . 340

Clock . 342

Combinatorial Logic . 343

Comparator . 344

Compare to Constant . 345

Configurable Subsystem . 346

Constant . 347

Constant Heat Flow . 348

Constant Temperature . 349

Controlled Heat Flow . 350

Controlled Temperature . 351

Current Source (Controlled) . 352

Current Source AC . 353

Current Source DC . 354

D Flip-flop . 355

Data Type . 356

DC Machine . 357

Dead Zone . 359

Delay . 360

Diode . 361

Diode with Reverse Recovery . 363

Diode Rectifier (3ph) . 366

xiv

Contents

Discrete Fourier Transform . 367

Discrete Integrator . 368

Discrete Mean Value . 372

Discrete RMS Value . 373

Discrete State Space . 374

Discrete Total Harmonic Distortion . 375

Discrete Transfer Function . 376

Display . 378

DLL . 379

Double Switch . 383

Edge Detection . 384

Electrical Algebraic Component . 385

Electrical Ground . 387

Electrical Label . 388

Electrical Model Settings . 389

Electrical Port . 390

Enable . 392

Flux Rate Meter . 393

Force (Constant) . 394

Force (Controlled) . 395

Force Sensor . 396

Fourier Series . 397

Function . 398

Gain . 399

Gear . 400

GTO . 401

GTO (Reverse Conducting) . 403

Heat Flow Meter . 405

Heat Sink . 406

Hit Crossing . 407

Hysteretic Core . 408

xv

Contents

Ideal 3-Level Converter (3ph) . 410

Ideal Converter (3ph) . 411

Ideal Transformer . 412

IGBT . 414

IGBT 3-Level Converter (3ph) . 416

IGBT 3-Level Half Bridge (NPC) . 418

IGBT Chopper (High-Side Switch) . 420

IGBT Chopper (High-Side Switch with Reverse Diode) 421

IGBT Chopper (Low-Side Switch) . 423

IGBT Chopper (Low-Side Switch with Reverse Diode) 424

IGBT Converter (3ph) . 426

IGBT Full Bridges (Series Connected) . 428

IGBT Half Bridge . 430

IGBT Half Bridges (Low-/High-Side Connected) 432

IGBT with Diode . 434

IGBT with Limited di/dt . 436

IGCT (Reverse Blocking) . 440

IGCT (Reverse Conducting) . 442

Induction Machine (Slip Ring) . 444

Induction Machine (Open Stator Windings) 448

Induction Machine (Squirrel Cage) . 451

Induction Machine with Saturation . 454

Inductor . 460

Inertia . 462

Initial Condition . 463

Integrator . 464

JK Flip-flop . 466

Leakage Flux Path . 468

Linear Core . 469

Linear Transformer (2 Windings) . 470

Linear Transformer (3 Windings) . 472

xvi

Contents

Logical Operator . 474

Magnetic Permeance . 475

Magnetic Port . 476

Magnetic Resistance . 478

Manual Double Switch . 479

Manual Signal Switch . 480

Manual Switch . 481

Manual Triple Switch . 482

Mass . 483

Math Function . 484

Memory . 485

Meter (3-Phase) . 486

Minimum / Maximum . 487

MMF Meter . 488

MMF Source (Constant) . 489

MMF Source (Controlled) . 490

Monoflop . 491

MOSFET . 493

MOSFET Converter (3ph) . 495

MOSFET with Diode . 496

MOSFET with Limited di/dt . 498

Moving Average . 500

Mutual Inductor . 501

Mutual Inductance (2 Windings) . 503

Mutual Inductance (3 Windings) . 505

Non-Excited Synchronous Machine . 507

Offset . 511

Op-Amp . 512

Op-Amp with Limited Output . 513

Pause / Stop . 514

Peak Current Controller . 515

xvii

Contents

Periodic Average . 516

Periodic Impulse Average . 517

Permanent Magnet Synchronous Machine 518

Pi-Section Line . 522

Piece-wise Linear Resistor . 524

Planetary Gear Set . 526

Polar to Rectangular . 528

Position Sensor . 529

Product . 530

Pulse Delay . 531

Pulse Generator . 533

Quantizer . 534

Rack and Pinion . 535

Ramp . 536

Random Numbers . 537

Rate Limiter . 538

Rectangular to Polar . 539

Relational Operator . 540

Relay . 541

Resistor . 542

Rotational Algebraic Component . 543

Rotational Backlash . 545

Rotational Clutch . 546

Rotational Damper . 547

Rotational Friction . 548

Rotational Hard Stop . 550

Rotational Model Settings . 552

Rotational Port . 553

Rotational Reference . 554

Rotational Speed (Constant) . 555

Rotational Speed (Controlled) . 556

xviii

Contents

Rotational Speed Sensor . 557

Rounding . 558

Saturable Capacitor . 559

Saturable Core . 561

Saturable Inductor . 564

Saturable Transformers . 566

Saturation . 568

Sawtooth PWM . 569

Sawtooth PWM (3-Level) . 571

Scope . 573

Set/Reset Switch . 575

Signal Demultiplexer . 577

Signal From . 578

Signal Goto . 579

Signal Inport . 580

Signal Multiplexer . 582

Signal Outport . 583

Signal Selector . 584

Signal Switch . 585

Signum . 586

Sine Wave . 587

Small Signal Gain . 588

Small Signal Perturbation . 589

Small Signal Response . 590

Space Vector PWM . 591

Space Vector PWM (3-Level) . 595

SR Flip-flop . 599

State Machine . 600

State Space . 601

Step . 602

Subsystem . 603

xix

Contents

Sum . 606

Switch . 607

Switched Reluctance Machine . 608

Symmetrical PWM . 612

Symmetrical PWM (3-Level) . 614

Synchronous Machine (Round Rotor) . 616

Synchronous Machine (Salient Pole) . 621

Synchronous Reluctance Machine . 627

Thermal Capacitor . 631

Thermal Chain . 632

Thermal Ground . 633

Thermal Model Settings . 634

Thermal Port . 635

Thermal Resistor . 637

Thermometer . 638

Thyristor . 639

Thyristor Rectifier/Inverter . 641

Thyristor with Reverse Recovery . 642

To File . 644

Torque (Constant) . 645

Torque (Controlled) . 646

Torque Sensor . 647

Torsion Spring . 648

Transfer Function . 649

Transformation 3ph->RRF . 651

Transformation 3ph->SRF . 652

Transformation RRF->3ph . 653

Transformation RRF->SRF . 654

Transformation SRF->3ph . 655

Transformation SRF->RRF . 656

Transformers (3ph, 2 Windings) . 657

xx

Contents

Transformers (3ph, 3 Windings) . 660

Translational Algebraic Component . 663

Translational Backlash . 665

Translational Clutch . 666

Translational Damper . 667

Translational Friction . 668

Translational Hard Stop . 670

Translational Model Settings . 672

Translational Port . 673

Translational Reference . 674

Translational Speed (Constant) . 675

Translational Speed (Controlled) . 676

Translational Speed Sensor . 677

Translational Spring . 678

Transmission Line (3ph) . 679

Transport Delay . 686

TRIAC . 687

Triangular Wave Generator . 689

Trigonometric Function . 690

Triple Switch . 691

Trigger . 692

Turn-on Delay . 694

Variable Capacitor . 695

Variable Inductor . 698

Variable Magnetic Permeance . 702

Variable Resistor . 704

Variable Resistor with Constant Capacitor 705

Variable Resistor with Constant Inductor 706

Variable Resistor with Variable Capacitor 707

Variable Resistor with Variable Inductor 709

Voltage Source (Controlled) . 711

xxi

Contents

Voltage Source AC . 712

Voltage Source AC (3-Phase) . 713

Voltage Source DC . 714

Voltmeter . 715

White Noise . 716

Winding . 718

Wire Multiplexer . 720

Wire Selector . 721

XY Plot . 722

Zener Diode . 724

Zero Order Hold . 725

15 Additional Simulink Blocks 727
AC Sweep . 728

Discrete Analysis . 731

Impulse Response Analysis . 732

Loop Gain Analysis (AC Sweep) . 734

Loop Gain Analysis (Multitone) . 735

Modulators . 736

Multitone Analysis . 737

Steady-State Analysis . 739

Timer . 741

Transformations . 742

xxii

Before You Begin

Installing PLECS Blockset

Installing PLECS Blockset on your computer is easy. You do not need to have
system administrator permissions. Since PLECS Blockset requires MATLAB
and Simulink make sure these programs are installed on your computer.

Installation on Microsoft Windows

1 If you already have a license file *.lic, copy it to your harddisk.

2 Run the installer executable by double-clicking it. PLECS can be installed
for the current user or all users of a machine. To install PLECS for all
users the installer must be executed with administrator privileges.

3 After the installer has finished, it will automatically start the PLECS
Blockset Installation Wizard.

4 On the License File page you can choose to copy the license file from your
harddisk, install a license for the PLECS Viewer or proceed without a li-
cense file (e.g. if you are going to request a trial of student license).

5 Review the MATLAB Search Path page and click Continue.

6 Start MATLAB and enter plecslib or choose the entry PLECS in the
Simulink Library Browser to open the PLECS Library.

Installation on macOS

1 If you already have a license file *.lic, copy it to your harddisk.

Before You Begin

2 Open the diskimage by double-clicking it and copy the folder
PLECS Blockset x.y to a location of your choice.

3 Run the application PLECS.app inside the folder PLECS Blockset x.y by
double-clicking it. This will start the PLECS Blockset Installation Wiz-
ard.

4 On the License File page you can choose to copy the license file from your
harddisk, install a license for the PLECS Viewer or proceed without a li-
cense file (e.g. if you are going to request a trial of student license).

5 Review the MATLAB Search Path page and click Continue.

6 Start MATLAB and enter plecslib or choose the entry PLECS in the
Simulink Library Browser to open the PLECS Library.

Installation on Linux

1 If you already have a license file *.lic, copy it to your harddisk.

2 Open a terminal and expand the package
plecs-blockset-x-y-z_linux64.tar.gz by entering the command

tar plecs-blockset-x-y-z_linux64.tar.gz

in a directory of your choice.

3 Still within the terminal execute the program PLECS.setup inside the folder
plecs/bin/glnxa64. This will start the PLECS Blockset Installation
Wizard.

4 On the License File page you can choose to copy the license file from your
harddisk, install a license for the PLECS Viewer or proceed without a li-
cense file (e.g. if you are going to request a trial of student license).

5 Review the MATLAB Search Path page and click Continue.

6 Start MATLAB and enter plecslib or choose the entry PLECS in the
Simulink Library Browser to open the PLECS Library.

Licensing

If PLECS cannot locate a valid license when it is loaded by MATLAB, it will
open the PLECS License Manager, which shows the exact problem.

2

Installing PLECS Blockset

Choose Install license file... if you have a received a license file license.lic
that you want to install or if you want to install the PLECS Viewer license
that is bundled with PLECS.
Choose Request trial license... to request a time-limited trial or student li-
cense.
Without a valid license you will still be able to open or save Simulink models
containing PLECS circuits. However, you cannot modify a circuit or run a sim-
ulation.

Note PLECS scans the license file only once when the module is loaded
by MATLAB. Therefore, if you reinstall the license file, you need to clear the
PLECS module before the changes can become effective. You can do this by en-
tering plecsclear at the MATLAB command prompt.

Configuring the MATLAB Search Path

The recommended method to register PLECS Blockset with MATLAB is
to add appropriate addpath commands to the startup file startup.m in
your MATLAB startup folder. For information on the startup.m file, enter
doc startup in MATLAB. The PLECS Blockset Installation Wizard will
assist you in creating or updating this file.
Using this method has the advantage that if you update MATLAB after hav-
ing installed PLECS, the new MATLAB version will automatically know about
PLECS. The disadvantage is that each user must setup their startup file indi-
vidually.
As an alternative method you can register PLECS with a specific MATLAB
installation using the MATLAB Path Browser or by directly editing the file
pathdef.m in the directory matlabroot/toolbox/local/. This method may be
appropriate if PLECS will be used by multiple users sharing the same com-
puter. You need to add the PLECS directory and its subdirectory demos to the
MATLAB search path.

Configuring PLECS

For information about setting global configuration options for PLECS see
“Configuring PLECS” (on page 41).

3

Before You Begin

Installing Different Versions of PLECS Blockset in Paral-
lel

If you want to keep different versions of PLECS installed in parallel on one
computer, you must ensure that only one version is on your MATLAB path at
any time during a MATLAB session. Otherwise, loss of data may occur. Be-
fore changing the MATLAB path, be sure to clear the currently loaded PLECS
module by entering plecsclear at the MATLAB command prompt. As an ad-
ditional precaution you should restart MATLAB after the change.

Uninstalling PLECS Blockset

Uninstalling PLECS Blockset is as easy as installing it.

1 Locate the directory where PLECS is installed by entering

which plecs

in the MATLAB command line.

2 Remove the PLECS directory and its subdirectory demos from the search
path. Depending on how the directories were added to the path during
installation, this is done using the Path Browser or by editing the file
pathdef.m in the directory matlabroot/toolbox/local/ or your MATLAB
startup file startup.m.

3 Quit MATLAB.

4 On Windows, deinstall PLECS Blockset by choosing the appropriate entry
in the Windows control panel. On macOS and Linux just delete the PLECS
directory.

4

Installing PLECS Standalone

Installing PLECS Standalone

Installing PLECS on your system is easy. You do not need to have system ad-
ministrator permissions.

Installation on Microsoft Windows

1 If you already have a license file *.lic, copy it to your harddisk.

2 Run the installer executable by double-clicking it. PLECS can be installed
for the current user or all users of a machine. To install PLECS for all
users the installer must be executed with administrator privileges.

3 Start PLECS.

Installation on macOS

1 If you already have a license file *.lic, copy it to your harddisk.

2 Open the disk image by double-clicking it.

3 Copy PLECS to the Application folder.

4 Start PLECS.

Installation on Linux

1 If you already have a license file *.lic, copy it to your harddisk.

2 Open a terminal and expand the package
plecs-standalone-x-y-z_linux64.tar.gz by entering the command

tar plecs-standalone-x-y-z_linux64.tar.gz

in a directory of your choice. This will create a new sub-directory named
plecs containing the required files.

3 Start PLECS by executing PLECS in the folder plecs.

5

Before You Begin

Licensing

If PLECS cannot locate any license file when you start it, it will show a mes-
sage that it is unlicensed.

Choose Start in demo mode to use PLECS in a restricted demo mode that
lets you build models and run simulations for a duration of 60 minutes. Sav-
ing models or data is disabled in this mode.

Choose Open license manager... to open the License Manager, which lets
you install a license file or request a time-limited trial or student license.

If PLECS does locate license files but they do not contain a valid license (e.g.
because it has expired) it will immediately open the License Manager without
the option to start the demo mode.

License File Location

Both PLECS Standalone and PLECS Blockset search for license files named
*.lic in the following directories:

License File Search Paths

Platform Search Paths

Windows C:\Users\<USER>\AppData\Local\Plexim\PLECS\licenses
C:\ProgramData\Plexim\PLECS\licenses

macOS ~/Library/Application Support/Plexim/PLECS/licenses
/Library/Application Support/Plexim/PLECS/licenses

Linux ~/.local/share/Plexim/PLECS/licenses
/usr/local/share/Plexim/PLECS/licenses

The License Manager will install license files in the first directory listed for
each platform because this location is usually writable by the user. However,
an administrator may choose to install license files to be used for all users in
the other directory.

If none of the search directories contains any license file *.lic, PLECS uses
the environment variables PLEXIM_LICENSE_FILE and LM_LICENSE_FILE to lo-
cate the license file.

6

Network Licensing

Network Licensing

If you purchase one or more floating licenses for PLECS, the license server
program FlexNet Publisher is employed to control access to PLECS. FlexNet
Publisher is a product of Flexera Software. The license file sent to you must
be installed on the license server. This file contains information that identifies
the computer running the license manager and specifies the number of float-
ing licenses you have purchased.

On the client computer(s), you need to use a text editor to create a license file
network.lic with the following content:

SERVER licenseserver ANY
USE_SERVER

where licenseserver is the IP address or the hostname or fully qualified do-
main name (FQDN) of the server computer running the license manager. If
the hostname or FQDN is used, verify that the client computer can resolve it
to the correct IP address. If the license manager uses a TCP port other than
27000-27009, the port number must be specified on the SERVER line after the
keyword ANY, e.g.:

SERVER licenseserver ANY 3456
USE_SERVER

PLECS tries to obtain a license from the server the first time you load a
model or library containing a PLECS circuit. If the license is not granted –
e.g. because the server is down or unreachable or because the licensed number
of concurrent users is already reached – PLECS will open the License Man-
ager to report the problem. In order to retry to obtain a license you need to
restart PLECS Standalone or clear PLECS Blockset from the MATLAB mem-
ory using the MATLAB command plecsclear. Once granted, a license is re-
turned to the server when quit PLECS Standalone or clear PLECS Blockset
from the MATLAB memory.

If the connection to the license server is lost after you have obtained a license,
PLECS will temporarily switch to the unlicensed mode. Upon successful recon-
nection to the server, PLECS will switch back to normal operation.

7

Before You Begin

What’s New in Version 4.3

Major New Features

• The new Import Wizard of the thermal editor facilitates the import of data
from graphs. The wizard also includes a fitting algorithm to calculate Foster
network coefficients for the thermal impedance from heating curves. See
“Importing Data from Graphical Datasheets” (on page 136).

• The Target Support Package framework of the PLECS Coder has been ex-
tended to facilitate code generation and external mode operation for embed-
ded targets (to be released separately).

Further Enhancements

• The Monoflop (see page 491) and Turn-on Delay (see page 694) now have
an option to specify the pulse duration resp. delay time via a control signal
instead of a parameter.

• The dialog callback of a masked subsystem now lets you hide, show and
move subsystem terminals depending on mask parameters. See “Mask Di-
alog” (on page 66).

• The schematic editor now has two additional zoom modes: For smooth
zooming hold the Ctrl key (cmd on macOS) while turning the scroll wheel
on the mouse. To fit the entire schematic into the editor window, select
Zoom to fit from the View menu or press Ctrl-* key (cmd-* on macOS).

8

1

Getting Started

Let us have a quick tour and see how PLECS is used. Our aim is to show the
essential elements of PLECS in real applications without regarding all the de-
tails, rules, and exceptions. At this stage, we are not trying to be complete. We
want to get you as soon as possible to the point where you can set up useful
applications. Many of the details are not necessary at the beginning and can
be studied later.

The following section addresses users of PLECS Blockset for Simulink. If you
are using the stand-alone version of PLECS please continue with section “Get-
ting Started with PLECS Standalone” (on page 18).

Getting Started with PLECS Blockset

To access PLECS you simply need to enter plecslib in the MATLAB com-
mand line. This will bring up a Simulink model that contains a generic
PLECS block named “Circuit” and various component libraries. In the li-
braries you find electrical components, from which you can create your cir-
cuits. Alternatively, you may access the PLECS toolbox by opening it in the
Simulink library browser.

A Simple Passive Network

The only way to become familiar with a new program is by using it. For this
reason we are presenting here two example circuits that you can reconstruct
on your computer. The examples are based on each other, since the features of
PLECS will be explained step by step.

1 Getting Started

The first electrical system we are going to model is a simple RLC network as
shown in Fig. 1.1. A capacitor is charged by a DC voltage source via an RL-
branch and its voltage is monitored with a voltmeter.

10mH

10V vC100 µF

10Ω

Figure 1.1: Simple RLC network

In order to enter the circuit in PLECS we have to open a new Simulink model.
Into the model window we copy the block “Circuit” from the PLECS library by
dragging it with the mouse. Our Simulink model should now look like Fig. 1.2.

Figure 1.2: Simulink model

Components

A double-click on the PLECS block will open an empty schematic window with
a menu bar quite similar to the one of a Simulink window. The components
required for our circuit must be copied into this window from the components
libraries. Like in Simulink, this is done by dragging them with the mouse.
If you want to copy components already placed in the window hold down the
Ctrl control key or use the right mouse button. The components that you need
for the RLC network can be found in in the library “Electrical” in the sub-
libraries “Sources”, “Meters” and “Passive Components”.

10

Getting Started with PLECS Blockset

After you have copied all components the schematic window should look like
Fig. 1.3. If not, move the components with the left mouse button. To rotate
selected components press Ctrl-R, to flip them horizontally press Ctrl-F. All
these functions can also be accessed via the menu bar.

Figure 1.3: PLECS schematic

Note You cannot place Simulink objects in a PLECS schematic and vice versa
since both programs do not share the same Graphical User Interface.

Connections

The unconnected electrical terminals of a component are marked with lit-
tle hollow circles. If we bring the mouse pointer close to such a terminal the
pointer shape changes from an arrow to a cross. We now can drag a connec-
tion to another component by holding the left mouse button down. When
we approach another terminal or an existing connection the pointer shape
changes into a double cross. As soon as we release the mouse button an elec-
trical connection will be created.

For drawing a branch connection place the mouse pointer on an existing con-
nection where you want the branch to start. With the right mouse button or
with the left mouse button while holding down the Ctrl key you can create a
connection from there to the desired destination.

11

1 Getting Started

Component Properties

Each component is identified by a unique name, which is chosen automati-
cally. You may change it as you wish by double-clicking on it in the schematic.
The name is intended only for documentation purposes and does not affect the
simulation. Of greater importance are the parameters that determine, for ex-
ample, the inductance of an inductor, the capacity of an capacitor, or the volt-
age of a DC voltage source. A double-click on the component icon opens a di-
alog box in which you can set these parameters. Fig. 1.4 shows the dialog box
for an inductor.

Figure 1.4: Inductor dialog box

If you want selected parameters to be displayed in the schematic, you must
check the check box on the right side of the edit field. For reasons of clarity
we prefer to display only the most important parameters of a component.

Units

Like Simulink PLECS does not know anything about units. It is your respon-
sibility that variables are scaled correctly. For power electronics we recom-
mend the use of SI quantities. However, if you want to employ PLECS for the
simulation of power systems it may be more appropriate to work with “per
unit” quantities.

For every component enter the values according to the schematic in Fig. 1.1.
In the dialog boxes of the inductor and the capacitor you can additionally set
the initial current resp. the initial voltage. Please leave both values at zero.

12

Getting Started with PLECS Blockset

Signals

Up to now our electrical circuit lacks a connection with the Simulink envi-
ronment. You will notice this from the fact that the PLECS block in Simulink
does not have inputs or outputs. In order to add inputs and outputs we must
copy the respective port blocks from the library “System” into the schematic.
In our case we want to access in Simulink the voltage measured by the volt-
meter. Therefore, we need the “Signal Outport” block that exports a signal
into the parent system.

Signals in PLECS correspond to the connections between Simulink blocks.
They provide unidirectional information interchange between components and
with Simulink.

Connect the output of the voltmeter with the input of the port block. In
Simulink, connect a Scope to the output of the PLECS block and start the
simulation. In order to see something of the more interesting part of the sim-
ulation you probably need to set the stop time to 0.1. By this time you should
have something like Fig. 1.5 and Fig. 1.6 on your screen.

Figure 1.5: Complete model

Adding More Measurements

If you want to measure other quantities in the circuit, simply add the required
voltmeters and ammeters. The measured signals can be exported to Simulink
with additional port blocks. Alternatively you can bundle the measured sig-
nals into a vector by using the multiplexer for signals “Signal Multiplexer”
from the library “System”.

13

1 Getting Started

Figure 1.6: Simulation result

You can also add scopes in the PLECS schematic directly. The “Scope" block
can be found in the library “System".

Importing Signals

You have already learned how to export signals from the electrical circuit to
Simulink via the output block. In the same manner you can also import sig-
nals from Simulink into your circuit, usually to control sources.

Let us see how the capacitor in our example charges and discharges if we ap-
ply a pulsed voltage. In the schematic we replace the DC voltage source by a
controlled one. Copy the input block “Signal Inport” into the schematic and
connect it to the voltage source. The PLECS block in Simulink now also has
an input terminal. Any Simulink signal that you connect to this terminal
will be translated into a voltage in the electrical circuit. In Fig. 1.7 we used
a pulse generator with a period of 0.04 sec and an amplitude of 10.

The signal generated by the pulse generator is discrete, i.e. its value changes
abruptly. Normally, the PLECS Scope would determine the signal type auto-
matically and display vertical slopes. In this case, however, the discrete signal
coming from the pulse generator is multiplexed with a continuous signal be-
fore reaching the Scope. In order to avoid trapezoidal curves, the signal type
must be set manually to “discrete” in the Data window of the Scope (see Fig.
1.8).

14

Getting Started with PLECS Blockset

Figure 1.7: RLC network with a pulsed voltage source

Figure 1.8: Data window of the PLECS Scope

Buck Converter

In the next example we will introduce the concept of ideal switches, which
distinguishes PLECS from other simulation programs. It will be shown how
switches are controlled, i.e. either by voltages and currents in the system or
by external signals.

25mH

vsrc 2Ω220µF vC

isrc

Figure 1.9: Schematic of buck converter

15

1 Getting Started

Switches

In the buck converter outlined in Fig. 1.9 we will model the transistor as an
entirely controllable switch and bear in mind that it may conduct current only
in one direction. We also need a free-wheeling diode. The diode is a switch
that closes as the voltage across it becomes positive, and opens as the current
through it becomes negative.

The diode can be found in the library “Electrical / Power Semiconductors” and
the switch in the library “Electrical / Switches”. All components in these li-
braries are based on ideal switches that have zero on-resistance and infinite
off-resistance. They open and close instantaneously. In some components like
the diode you may add a forward voltage or a non-zero on-resistance. If you
are unsure about these values leave them at zero.

In order to control the switch in our buck converter we import another signal
from Simulink and connect it to the switch. The switch will close upon a non-
zero signal and open when the signal goes back to zero.

Figure 1.10: Electrical part of buck converter

By now you should be able to model the electrical part of the buck converter
as shown in Fig. 1.10. For the buck converter we will implement a hysteresis
type control that keeps the capacitor voltage roughly in a ±0.2 V band around
6 V. To make things a bit more interesting we apply a step change from 12 V
down to 8 V to the input voltage during the simulation.

16

Getting Started with PLECS Blockset

Figure 1.11: Simulation of buck converter with hysteresis control

17

1 Getting Started

Getting Started with PLECS Standalone

The only way to become familiar with a new program is by using it. For this
reason we are presenting here two example circuits that you can reconstruct
on your computer. The examples are based on each other, since the features of
PLECS will be explained step by step.

After starting PLECS the PLECS Library browser is displayed. In the li-
braries you find various components from which you can create your circuits.
You can browse through the available libraries and see which components are
available.

A Simple Passive Network

The first electrical system we are going to model is a simple RLC network as
shown in Fig. 1.12. A capacitor is charged by a DC voltage source via an RL-
branch and its voltage is monitored with a voltmeter.

10mH

10V vC100 µF

10Ω

Figure 1.12: Simple RLC network

In order to enter the circuit in PLECS we have to open a new PLECS model.
This is done by selecting “New Model” from the “File” Menu in the Library
Browser.

Components

The components required for our circuit must be copied into this window from
the Library Browser. This is done by dragging them with the mouse. If you
want to copy components already placed in the window hold down the Ctrl
control key or use the right mouse button.

The electrical components that you need for the RLC network can be found in
in the library “Electrical” in the sub-libraries “Sources”, “Meters” and “Pas-
sive Components”. The scope is located in the library “System”. Instead of

18

Getting Started with PLECS Standalone

browsing for the components you can also search for them by entering the first
letters of the component you need in the search bar. For example, typing sc
shows you the scope, res all available resistors etc.

After you have copied all components the schematic window should look like
Fig. 1.13. If not, move the components with the left mouse button. To rotate
selected components press Ctrl-R, to flip them horizontally press Ctrl-F. All
these functions can also be accessed via the menu bar.

Figure 1.13: PLECS schematic

Connections

The unconnected electrical terminals of a component are marked with lit-
tle hollow circles. If we bring the mouse pointer close to such a terminal the
pointer shape changes from an arrow to a cross. We now can drag a connec-
tion to another component by holding the left mouse button down. When
we approach another terminal or an existing connection the pointer shape
changes into a double cross. As soon as we release the mouse button an elec-
trical connection will be created.

For drawing a branch connection place the mouse pointer on an existing con-
nection where you want the branch to start. With the right mouse button or
with the left mouse button while holding down the Ctrl key you can create a
connection from there to the desired destination.

Component Properties

Each component is identified by a unique name, which is chosen automati-
cally. You may change it as you wish by double-clicking on it in the schematic.
The name is intended only for documentation purposes and does not affect the

19

1 Getting Started

simulation. Of greater importance are the parameters that determine, for ex-
ample, the inductance of an inductor, the capacity of an capacitor, or the volt-
age of a DC voltage source. A double-click on the component icon opens a dia-
log box in which you can set these parameters. Fig. 1.14 shows the dialog box
for an inductor.

Figure 1.14: Inductor dialog box

If you want selected parameters to be displayed in the schematic, you must
check the check box on the right side of the edit field. For reasons of clarity
we prefer to display only the most important parameters of a component.

Units

PLECS does not know anything about units. It is your responsibility that
variables are scaled correctly. For power electronics we recommend the use
of SI quantities. However, if you want to employ PLECS for the simulation of
power systems it may be more appropriate to work with “per unit” quantities.

For every component enter the values according to the schematic in Fig. 1.12.
In the dialog boxes of the inductor and the capacitor you can additionally set
the initial current resp. the initial voltage. Please leave both values at zero.

Signals

In addition to the electrical connections (wires) that are used to connect elec-
trical components PLECS also makes use of unidirectional signals. The sig-
nals are painted in green and have an arrowhead to indicate their direction.

20

Getting Started with PLECS Standalone

In the RLC example a signal connects the output terminal of the voltmeter to
the input terminal of the scope.

PLECS uses signals to carry non-electrical information like measurement val-
ues or triggering pulses for switches. Signals can be used in calculations and
displayed in a scope. Electrical connections cannot be fed into a scope directly,
you always have to use a volt- or ammeter to convert the electrical quantities
into a signal first.

By this time your model should look similar to Fig. 1.15. To start the simu-
lation, press Ctrl-T or select “Start” from the “Simulation” menu. In order
to see something of the more interesting part of the simulation you need to
set the stop time to 0.1. To do this, open the Simulation Parameters dialog
by clicking the corresponding menu entry in the “Simulation” menu or press
Ctrl-E.

You should now get the simulation results shown in below.

Figure 1.15: Complete model and simulation result

Adding Control Blocks

To enhance our model we would like to add some dynamic behavior into our
static electrical model. Let us see how the capacitor in our example charges
and discharges if we apply a pulsed voltage. In the schematic we replace the
DC voltage source by a controlled one. The input of the voltage source can be
any signal generated from one of the control blocks in PLECS. In Fig. 1.16 we
used a pulse generator with a period of 0.04 sec and an amplitude of 10 to con-
trol the voltage source.

21

1 Getting Started

Figure 1.16: RLC network with a pulsed voltage source

Buck Converter

In the next example we will introduce the concept of ideal switches, which
distinguishes PLECS from other simulation programs. It will be shown how
switches are controlled, i.e. either by voltages and currents in the system or
by external signals.

25mH

vsrc 2Ω220µF vC

isrc

Figure 1.17: Schematic of buck converter

Switches

In the buck converter outlined in Fig. 1.17 we will model the transistor as an
entirely controllable switch and bear in mind that it may conduct current only
in one direction. We also need a free-wheeling diode. The diode is a switch
that closes as the voltage across it becomes positive, and opens as the current
through it becomes negative.

The diode can be found in the library “Electrical / Power Semiconductors” and
the switch in the library “Electrical / Switches”. All components in these li-

22

Getting Started with PLECS Standalone

braries are based on ideal switches that have zero on-resistance and infinite
off-resistance. They open and close instantaneously. In some components like
the diode you may add a forward voltage or a non-zero on-resistance. If you
are unsure about these values leave them at zero.

The switch is controlled by an external signal. It will close upon a non-zero
input and open when the signal goes back to zero.

We start with the electrical part of the buck converter first. By now you
should be able to model it as shown in Fig. 1.18.

Figure 1.18: Electrical part of buck converter

Subsystems

We’d also like to separate the electrical part from the control part. This has no
effect on the simulation result but makes the whole system more structured.
Once you have completed the circuit from Fig. 1.18, select all components (ei-
ther by clicking on an empty space in the upper left corner of the schematic
and dragging a frame to the lower right corner, or by pressing Ctrl-A). Now
create a new subsystem by selecting “Create Subsystem” from the “Edit” menu
or by pressing Ctrl-G. The electrical components are now in a new subsys-
tem “Sub”. You can rename it to something more meaningful, e.g. “Circuit”
and change the icon size by dragging one of the selected corners. You can also
move the name label to another position by clicking and dragging it to the bor-
ders or the corners of the icon. Now your system should look similar to Fig.
1.19.

To connect the subsystem to the outer schematic we need to place ports into
it. Drag two Signal Inports and two Signal Outports into the subsystem
schematic and connect them to the voltage source, the switch, the volt- and

23

1 Getting Started

Figure 1.19: Electrical Subsystem

the ammeter respectively. Note that a new terminal appears in the subsystem
icon for each port that you drag into the subsystem schematic.

For the buck converter we will implement a hysteresis type control that keeps
the capacitor voltage roughly in a ±0.2 V band around 6 V. To make things a
bit more interesting we apply a step change from 12 V down to 8 V to the in-
put voltage during the simulation.

Figure 1.20: Simulation of buck converter with hysteresis control

Demo Models

Now that you’ve built your first own models in PLECS it may be worthwhile
to take a look at the demo models that come with PLECS. Open the demo
model browser by selecting “Demo Models” from the “View” Menu.

24

2

How PLECS Works

PLECS is a software package for modeling and simulating dynamic systems.
As with any other software package, in order to make the best use of it you
should have a basic understanding of its working principles. Before delving
into the question how PLECS works, however, it is worthwhile to distinguish
between the terms modeling and simulation.

The term modeling refers to the process of extracting knowledge from the sys-
tem to be simulated and representing this knowledge in some formal way.
The second part – i.e. the representation of knowledge – can be more or less
straightforward depending on the formalism used. PLECS offers three dif-
ferent formalisms – equations (implemented as C-code), block diagrams and
physical models – that can be used in the same modeling environment. They
are described in the following section.

The term simulation refers to the process of performing experiments on a
model in order to predict how the real system would behave under the same
conditions. More specifically, in the context of PLECS, it refers to the compu-
tation of the trajectories of the model’s states and outputs over time by means
of an ordinary differential equation (ODE) solver. This is described in the sec-
ond section.

Modeling Dynamic Systems

A system can be thought of as a black box as depicted below. The system does
not exchange energy with its environment but only information: It accepts in-
put signals u, and its reactions can be observed by the output signals y.

A system can have internal state variables that store information about the
system’s past and influence its current behavior. Such state variables can be
continuous, i.e. they are governed by differential equations, or discrete, i.e.

2 How PLECS Works

xc, xd

System states
u

Input signals
y
Output signals

they change only at certain instants. An example of a continuous state vari-
able is the flux or current of an inductor; an example of a discrete state vari-
able is the state of a flip flop.

System Equations

One way to describe a system is by mathematical equations. Typical system
equations are listed below:

• An output function describes the system’s outputs in terms of the current
time, the system’s inputs and its internal states.

• If the system has discrete states, an update function determines if and how
they change at a given time for the current inputs and internal states.

• If the system has continuous states, a derivative function describes their
derivatives with respect to time.

Symbolically, these functions can be expressed as follows:

y = foutput(t, u, xc, xd)

xnext
d = fupdate(t, u, xc, xd)

ẋc = fderivative(t, u, xc, xd)

Such a description is most convenient for implementation in a procedural pro-
gramming language like C.

Block Diagrams

A more graphic modeling method that is commonly used in control engineer-
ing is a block diagram such as the one below which shows a low pass filter.

Each of the three blocks is again a dynamic system in itself, that can be de-
scribed with its own set of system equations. The blocks are interconnected

26

Simulating Dynamic Systems

1/s+− 10

with directed lines to form a larger system. The direction of the connections
determines the order in which the equations of the individual blocks must be
evaluated.

Physical Models

Block diagrams are very convenient to model control structures where it is
clear what the input and output of a block should be. This distinction is less
clear or impossible for physical systems.

For instance, an electrical resistor relates the quantities voltage and current
according to Ohm’s law. But does it conduct a current because a voltage is ap-
plied to it, or does it produce a voltage because a current is flowing through it?
Whether the first or the second formulation is more appropriate depends on
the context, e.g. whether the resistor is connected in series with an inductor
or in parallel with a capacitor. This means that it is not possible to create a
single block that represents an electrical resistor.

Therefore, block diagrams with their directed connections are usually not very
useful for modeling physical systems. Physical systems are more conveniently
modeled using schematics in which the connections between individual compo-
nents do not imply a computational order.

PLECS currently supports physical models in the electrical, magnetic, me-
chanical and thermal domains (in the form of lumped parameter models).

Simulating Dynamic Systems

A simulation is performed in two phases – initialization and execution – that
are described in this section.

27

2 How PLECS Works

Model Initialization

Physical Model Equations

PLECS first sets up the system equations for the physical model according to
e.g. Kirchhoff ’s current and voltage laws. If the physical model contains only
ideal linear and/or switching elements it can be described by a set of piece-
wise linear state-space equations:

ẋ = Aσx + Bσu

y = Cσx + Dσu

The subscript σ is due to the fact that each state-change of a switching ele-
ment leads to a new set of state-space matrices.

The complete physical model is thus represented by a single, atomic subsys-
tem. The following figure shows the interaction between the physical subsys-
tem, the surrounding block diagram and the ODE solver.

s
1 Event

detectionSolver

B + A C +

D
Sw

itc
h

m
an

ag
er

Physical model

continuous
inputs

gate
inputs

measure-
ments

Switched state-space implementation

The physical subsystem accepts external input signals for controllable sources
and for switching elements and it provides an output signal containing the
values of physical measurements. During the simulation, the derivatives
of the physical state variables are calculated and handed over to the solver
which in turn calculates the momentary values of these state variables.

28

Simulating Dynamic Systems

The Switch Manager monitors the gate signals and the internal measure-
ments and decides whether a switching action is necessary. The Switch Man-
ager also provides auxiliary signals – so-called zero-crossing signals – to the
solver for proper location of the exact instants when a switching should occur.

A flowchart of the Switch Manager is shown in the figure below. In every
simulation step, after the physical measurements have been calculated, the
Switch Manager evaluates the switching conditions of all switches in the
physical model. If a switching action is necessary, it initiates the calculation
of a new set of state-space matrices or fetches a previously calculated set from
a cache. Afterwards, it recalculates the physical measurements with the new
state-space matrices to check whether further switching actions of naturally
commutated devices are required. It will iterate through this process until all
switches have reached a stable position. If a set of switch states σ is encoun-
tered repeatedly in this process, PLECS is unable to determine stable condi-
tions and aborts the simulation.

Calculate
state-space

outputs

Toggle switches
and get new
topology σ

Switch loop
detected?

Switching
required?

Start with
given u, x, σ

Continue with
next step

yes

no

no

STOP
yes

Switch Manager flowchart

Block Sorting

After the setup of the physical model, PLECS determines the execution order
of the block diagram. As noted above, the physical model is treated as a single

29

2 How PLECS Works

atomic subsystem of the block diagram. The execution order is governed by
the following computational causality:

If the output function of a block depends on the current value of one or
more input signals,the output functions of the blocks that provide these
input signals must be evaluated first.

Direct feedthrough The property of an input port whether or not its cur-
rent signal values are required to compute the output function is called direct
feedthrough. For example, the output function of a linear gain is

y = k · u

and so the input signal of the gain has direct feedthrough. In contrast, the
output function of an integrator is

y = xc

i.e. the integrator just outputs its current state regardless of the current in-
put. The integrator input therefore does not have direct feedthrough.

Algebraic loops An algebraic loop is a group of one or more blocks that are
connected in a circular manner, so that the output of one block is connected to
a direct feedthrough input of the next one.

For such a group it is impossible to find a sequence in which to compute their
output functions because each computation involves an unknown variable (the
output of the previous block). Instead, the output functions of these blocks
must be solved simultaneously. PLECS uses a Newton-type equation solver for
this purpose. Since the solver performs iterations in order to find a solution
consistent with all blocks, models with algebraic loops may run more slowly
than models without algebraic loops. Failure to find a solution brings the sim-
ulation to a halt with an error message.

See “Simulation Parameters” (on page 103) for a list of parameters that influ-
ence the solution of algebraic loops.

The Initial Condition block (see page 463) can be used to provide a guess to
the equation solver at the start of a simulation.

30

Simulating Dynamic Systems

Model Execution

The figure below illustrates the workflow of the actual simulation.

Calculate
outputs

Calculate
updates

Calculate
outputs

Calculate
outputs

Start
simulation

Terminate
simulation

Main
loop

Event
detection
loop

Integration
loop

Calculate
derivatives

Calculate
zero-crossings

Simulation loop

Main Loop

The main simulation loop – also called a major time step – consists of two ac-
tions:

1 The output functions of all blocks are evaluated in the execution order that
was determined during block sorting. If a model contains scopes, they will
be updated at this point.

2 The update functions of blocks with discrete state variables are executed to
compute the discrete state values for the next simulation step.

Depending on the model and the solver settings, the solver may enter one or
both of the following minor loops.

31

2 How PLECS Works

Integration Loop

If a model has continuous state variables, it is the task of the solver to nu-
merically integrate the time derivatives of the state variables (provided by the
model) in order to calculate the momentary values of the states variables.

Depending on the solver algorithm, an integration step is performed in multi-
ple stages – also called minor time steps – in order to increase the accuracy of
the numerical integration. In each stage the solver calculates the derivatives
at a different intermediate time. Since the derivative function of a block can
depend on the block’s inputs – i.e. on other blocks’ outputs – the solver must
first execute all output functions for that particular time.

Having completed an integration step for the current step size, a variable-step
solver checks whether the local integration error remains within the specified
tolerance. If not, the current integration step is discarded and a new integra-
tion is initiated with a reduced step size.

Event Detection Loop

If a model contains discontinuities, i.e. instants at which the model behavior
changes abruptly, it may register auxiliary event functions to aid a variable-
step solver in locating these instants. Event functions are block functions and
are specified implicitly as zero-crossing functions depending on the current
time and the block’s inputs and internal states.

For instance, if a physical model contains a diode, it will register two event
functions, fturn on = vD and fturn off = iD, depending on the diode voltage and
current, so that the solver can locate the exact instants at which the diode
should turn on and off.

If one or more event functions change sign during the current simulation
step, the solver performs a bisection search to locate the time of the first zero-
crossing. This search involves the evaluation of the event functions at differ-
ent intermediate times. Since the event function of a block – like the deriva-
tive function – can depend on the block’s inputs, the solver must first execute
all output functions for a particular time. Also these intermediate time steps
are called minor time steps.

Having located the first event, the solver will reduce the current step size so
that the next major time step is taken just after the event.

32

Simulating Dynamic Systems

Fixed-Step Simulation

As indicated in the previous paragraphs, certain important aspects of the mi-
nor simulation loops require a variable-step solver that can change its step
size during a simulation. Using a solver with a fixed step size has two serious
implications.

Integration Error A fixed-step solver does not have any control over the
integration error. The integration error is a function of the model time con-
stants, the step size and the integration method. The first parameter is ob-
viously given by the model, but the second and possibly the third parameter
must be provided by the user. One strategy for determining an appropriate
step size is to iteratively run simulations and reduce the step size until the
simulation results stabilize.

Event Handling Discontinuities in a physical model – such as the turn-on or
turn-off of a diode or the transition from static to dynamic friction – typically
do not coincide with a fixed simulation step. Postponing such non-sampled
events until the following fixed simulation step will produce jitter and may
lead to subsequent runtime errors, e.g. because a physical state variable be-
comes discontinuous.

For these reasons it is generally recommended to use a variable-step solver.
However, if you plan to generate code from a model to run it on a real-time
system you will need to use a fixed-step solver.

Physical Model Discretization

In order to mitigate the problems due to non-sampled events, PLECS trans-
forms the physical model into a discrete state-space model when it is sim-
ulated with a fixed-step solver. The continuous state-space equations of the
electrical and magnetic domains are discretized and replaced with the follow-
ing update rule:

xn = Ad · xn−1 + Bd1 · un−1 + Bd2 · un

By default, a first-order hold is applied to the input signals, i.e. it is assumed
that the inputs change linearly from un−1 in the previous step to un in the
current step. As a consequence, the inputs of the electro-magnetic model now
have direct feedthrough because their current values must be known before
the current model states and the model output can be calculated. This will
result in an algebraic loop if the value of a controlled voltage or current source
depends on a measurement in the electro-magnetic model.

33

2 How PLECS Works

To avoid this problem, the Controlled Current Source (see page 352) and the
Controlled Voltage Source (see page 711) can be configured to apply a zero-
order hold on the input signal when the model is discretized. In this case only
the input value from the previous simulation step u

(i)
n−1 is required to calculate

the current state values.

By default, the discrete state-space matrices Ad, Bd1 and Bd2 are calculated
from the continuous matrices A and B using a proprietary 4th order accurate,
stiffly stable back-interpolation algorithm called BI45. Alternatively, the bilin-
ear transformation known as Tustin’s method can be chosen. It is only 2nd or-
der accurate and has poor damping characteristics for time constants that are
smaller than the discretization step size, but it is cheaper to compute because
Bd1 equals Bd2. Therefore, it can be useful for real-time simulations where
the calculation time is essential. The discretization method can be chosen in
the Simulation Parameters dialog (see page 103).

Note that this applies only to the discretization of the electro-magnetic do-
main. The state variables both from other physical domains and from the con-
trol block diagram are integrated with Euler’s method.

Interpolation of Non-Sampled Switching Events

With the physical model discretized like this, non-sampled switching events
can be handled efficiently using the following algorithm:

1 Check whether the solver has stepped over a non-sampled switching event
in the last simulation step.

2 If so, determine the time of the event and calculate the model state just af-
ter the event using linear interpolation and handle the event, i.e. toggle one
or more switches.

3 Perform one full forward step.

4 Linearly interpolate the model states back to the actual simulation time.

This algorithm is illustrated using the example of a half-wave rectifier shown
below. The two graphs show the commutation of the dc current from diode D3
(shown in gray) to diode D1 (shown in black). The solid lines show the results
from a simulation with a variable-step solver, large dots mark the steps of the
fixed-step simulation, and small dots mark the internal interpolation steps.

Commutation starts when the voltage across D1 becomes positive. The fixed-
step solver first steps well beyond the zero-crossing of the voltage (1). PLECS
then internally steps back to the zero-crossing (2) and turns on D1. With the

34

Simulating Dynamic Systems

new set of state-space equations, it performs an internal full step forward (3)
and then interpolates back to the actual simulation time (4). Next, the solver
steps beyond the zero-crossing of the current through D3 (1). Again, PLECS
internally steps back to the zero-crossing (2) and turns off D3. With the new
set of state-space equations, it performs an internal full step forward (3) and
then interpolates back to the actual simulation time (4).

1
2

34

D
io

de
 c

ur
re

nt
s

1

2 34

D
io

de
 v

ol
ta

ge

Interpolation of non-sampled switching events

Note that without this interpolation scheme, D3 would have been turned off at
point (1). This would have caused the current through the inductor in phase 3
to become discontinuous. Such a non-physical behavior can lead to gross simu-
lation errors and should therefore be avoided.

35

2 How PLECS Works

Sampled Data Systems

PLECS allows you to model sampled data systems, i.e. discrete systems that
change only at distinct times. You can model systems that are sampled pe-
riodically or at variable intervals, systems that contain blocks with different
sample rates, and systems that mix continuous and discrete blocks.

Sample Times

Sample times are assigned on a per-block basis, and some blocks may have
more than one sample time. PLECS distinguishes between the following sam-
ple time types:
Continuous A continuous sample time is used for blocks that must be up-
dated in every major and minor time step. This includes all blocks that have
continuous state variables, such as the Integrator or Transfer Function.
Semi-Continuous A semi-continuous sample time is used for blocks that
must be updated in every major time step but whose output does not change
during minor time steps. This applies for instance to the Memory block, which
always outputs the input value of the previous major time step.
Discrete-Periodic A periodic sample time is used for blocks that are updated
during major time steps at regular intervals.
Discrete-Variable A variable sample time is used for blocks that must be
updated during major time steps at variable intervals which are specified by
the blocks themselves.
Inherited An inherited sample time is used for blocks that do not have a
sample time of their own but may adopt the sample time from other blocks
connected to them. This includes blocks such as Gain, Sum and Product.
Constant A constant sample time is used for blocks that are updated only
once at the beginning of a simulation. The only block that explicitly uses a
constant sample time is the Constant block. However, other blocks may inherit
a constant sample time.
For most block types the sample time is automatically assigned. Discrete
blocks and the C-Script block (see page 337) have a parameter Sample Time
allowing you to specify the sample time explicitly. A sample time is specified
as a two-element vector consisting of the sample period and an offset time.
The offset time can be omitted if it is zero.
The table below lists the different sample time types and their corresponding
parameter values.

36

Sampled Data Systems

Sample Time Parameter Values

Type Value

Continuous [0, 0]

0

Semi-Continuous [0, -1]

Discrete-Periodic [Tp, To] Tp: Sample period, Tp > 0

Tp To: Sample offset, 0 ≤ To < Tp

Discrete-Variable [-2, 0]

-2

Inherited [-1, 0]

-1

Constant [inf, 0]

inf

Sample Time Inheritance

For blocks with an inherited sample time, PLECS employs the following prop-
agation scheme to determine an appropriate sample time:

1 Propagate the sample times forward along the block execution order (see
“Block Sorting” on page 29). A block with an inherited sample time will be
assigned a sample time based on the sample times of the blocks that are
connected to the block’s inputs.

2 Propagate the sample times backward along the block execution order. A
block with an inherited sample time will be assigned a sample time based
on the sample times of the blocks that are connected to the block’s outputs.

3 Loop until there are no inherited sample times left or until no inherited
sample time can be resolved.

Sample times are assigned according to the following rules:

• If any sample time is inherited, the block sample time also remains inher-
ited.

37

2 How PLECS Works

• Else, if all sample times are constant, the block sample time is set to con-
stant.

• Else, if any sample time is continuous, the block sample time is set to con-
tinuous.

• Else, if all sample times are fixed-step discrete or constant and the fastest
sample time is a valid base sample time of the other non-constant sample
times, the block sample time is set to the fastest sample time.

• Else, the block sample time is set to semi-continuous.

Any block sample time that cannot be resolved using this propagation scheme
is set to continuous.

Multirate Systems

Systems that contain blocks with multiple different discrete-periodic sample
times are called multirate systems. For such systems, PLECS calculates a
base sample time as the greatest common divisor of the periods and offsets
of the individual sample times. The individual periods and offsets are then ex-
pressed as integer multiples of the base sample time.

This is necessary in order to avoid synchronization problems between blocks
with different sample times that would occur when the sample hits are cal-
culated using floating-point arithmetic. For instance, in double precision
floating-point arithmetic 3*1e-4 is not equal to 3e-4 (even though the differ-
ence is only about 5.4 ∗ 10−20).

In order to find the greatest common divisor, PLECS may slightly adjust indi-
vidual sample periods or offsets within a relative tolerance of approximately
±10−8. PLECS does not allow the base sample time to become smaller than
10−6 times the largest sample period in order to avoid overflows in the integer
arithmetic.

Troubleshooting

If PLECS fails to find an appropriate base sample time it will show a corre-
sponding error message. There are three possibilities to resolve the problem:

Adjusting the sample times Adjust the sample times of the individual
blocks in the system so that PLECS can find a base sample time within the
above constraints. Whenever possible, specify sample times as rational num-
bers instead of decimal fractions. For instance, for a block that is sampled
with a frequency of 30 kHz enter 1/30e3 instead of 3.3333e-5.

38

Sampled Data Systems

Allow multiple base sample times You can allow PLECS to use differ-
ent base sample rates for different groups of block sample times. To do so,
uncheck the option Use single base sample rate in the simulation param-
eters dialog. Only block sample times within the same group are then guaran-
teed to be synchronized with each other.

Disable sample time synchronization You can disable the sample time
synchronization altogether by unchecking the option Synchronize fixed-step
sample times in the simulation parameters dialog. This is generally not rec-
ommended.

The last two options are only available when using a continuous state-space
model with a variable-step solver.

39

2 How PLECS Works

40

3

Using PLECS

The user interface of PLECS very closely resembles that of Simulink. Circuits
are built using the same simple click and drag procedures that you use to
build a model. This chapter explains those aspects of PLECS that either are
unique to PLECS or work differently from Simulink.

Configuring PLECS

The PLECS configuration parameters can be modified per user in the PLECS
Preferences dialog. Choose the menu entry Preferences... from the File
menu (PLECS menu on OS X) to open it.

General

The language used by PLECS can be specified in the Language field. PLECS
uses the language settings of your computer as default setting. Available
languages are English and Japanese. To activate the new language settings
PLECS must be restarted.

The setting Symbol format controls whether resistors and capacitors are
drawn in DIN or ANSI style. The table below shows the different component
representation for both settings.

When the Grid setting is set to on a grid is displayed in the background of
schematic windows for easier placement of components and their connections.

When the Circuit browser default setting specifies the default filtering
mode used for all circuit browsers (see section “Circuit Browser” on page 79).

The maximum amount of memory that is used by PLECS during the sim-
ulation can be controlled with the setting Cache size limit. Once PLECS

3 Using PLECS

DIN ANSI

reaches the memory limit it will discard earlier computation results which
may have to be recalculated later during the simulation. On the other hand
the value should not be higher than about one third of the physical memory of
the computer where PLECS is running, otherwise the simulation performance
may be degraded due to swapping.

In PLECS Standalone the XML-RPC interface can be enabled or disabled for
external scripting. When enabled, PLECS listens on the specified TCP port for
incoming XML-RPC connections. See chapter “XML-RPC Interface in PLECS
Standalone” (on page 247) for details on using the XML-RPC interface.

When opening a model, PLECS can reopen all scope windows that were open
when the model was saved. The option Scope windows enables or disables
this behavior.

Libraries

To add custom libraries to the library browser add these libraries in the User
libraries settings. All custom libraries must be located on the library search
path, which is defined differently depending on the PLECS edition:

• For PLECS Standalone the library search path can be changed in the
Search path settings on the same preferences page.

• For PLECS Blockset the custom libraries must be located on the MATLAB
search path. The MATLAB search path can be set from the MATLAB file
menu. The Search path settings are not available in the PLECS Blockset
preferences.

Note To create a new component library in PLECS Blockset, you need to copy
the PLECS Library block from the PLECS Extras library into a Simulink model
or library. For details on creating custom libraries see also section “Libraries”
(on page 53).

42

Configuring PLECS

Thermal

The setting Thermal description search path contains the root directories
of the thermal library. See section “Thermal Library” (on page 126) for more
details.

Scope Colors

The Scope background setting determines whether the PLECS scopes are
drawn with a black or white background.

The Scope palette setting determines the appearance of the curves inside
the PLECS scopes. To create a new custom palette, select any existing palette
and click on Duplicate. To remove a palette, click on Remove. Note that the
default palette is read-only and cannot be removed.

The Signals group box lists the base properties used for the curves in a scope
plot. You can specify color, line style and line width individually for each
curve. If a plot contains more curves than the number of entries in this list,
PLECS will restart at the beginning. The default palette specifies six solid,
one pixel wide line styles.

The Distinguish traces by setting specifies how different traces for a specific
signal are distinguished from each other (see “Adding Traces” on page 96). In
the default palette, traces are distinguished by brightness, i.e. by using dif-
ferent shades of the base color. In custom palettes, you can alternatively dis-
tinguish traces by varying the color, line style or width. The selected property
will then not be available in the signal list. Again, if a plot has more traces
than the number of entries in this list, PLECS will restart at the beginning.

Update

PLECS can be configured to check for updates every time it is started. If the
computer running PLECS is located behind a firewall it may be necessary to
configure proxy settings. These settings can be determined automatically or
entered manually.

The Server name configures the fully qualified domain name or the IP ad-
dress of the HTTP proxy server. Leave empty to disable proxy usage.

The Server port configures the TCP port of the HTTP proxy server.

The Proxy user configures the username to use for proxy authentication.
Leave empty to disable proxy authentication.

43

3 Using PLECS

The Proxy password configures the password for proxy authentication.

Note To check for updates PLECS sends its version to the PLEXIM update
server. No further personal information is transmitted.

Coder

This tab only appears if you have a license for the PLECS Coder. For more
information about the PLECS Coder, see “Code Generation” (on page 257).

The setting Target support packages path lets you specify a folder, which
PLECS searches for target support packages for the PLECS Coder. A target
support package enables the PLECS Coder to generate code that is specific for
a particular target such as the PLECS RT Box.

The table Installed targets lists the support packages that are installed in
the specified folder. PLECS automatically searches the folder when you start
it. To refresh the list after you have installed a new target, click on the Re-
fresh button.

44

Installing Extensions

Installing Extensions

The functionality of PLECS can be extended using packages called extensions.
For PLECS 4.2, two extensions are available: WBS (Web-Based Simulation)
and PIL (Processor-In-the-Loop). To install and configure these extensions,
the Extensions dialog can be used: in PLECS, click on the menu entry PLECS
Extensions... from the File menu.

WBS allows the visitor of a web page to run PLECS simulations interactively
in a web browser. The simulation models are provided by a PLECS simula-
tion server. PLECS Standalone can be used as a simulation server on the local
computer. No additional WBS license is needed as long as this feature is used
only for development and test purposes; for the deployment of the web service
a separate server license is required. The PLECS WBS framework contains
the necessary files to set up the web service. Please see the accompanying doc-
umentation within the framework.

The PIL approach allows to run code on an embedded controller that is syn-
chronized with the simulation in PLECS. The necessary framework files for
generating suitable embedded applications can be installed by users that
have a separate PIL license. For more information about PIL, see chapter

45

3 Using PLECS

“Processor-in-the-loop” (on page 275) and the separate documentation avail-
able from the PLECS website.

The dialog shows the available frameworks shipped with the current PLECS
release in the lower part and the already installed frameworks in the upper
part. To extract a framework an installation path has to be specified once (at
the top of the dialog). Select the desired version from the available frame-
works and click on Install selected.

Creating a New Circuit with PLECS Blockset

Open the PLECS library by typing plecslib at the MATLAB command
prompt. On Windows you can also use the Simulink library browser and click
on the entry PLECS. Copy the Circuit block from the PLECS library into
your Simulink model, then double-click the block to open the schematic editor.

46

http://www.plexim.com/download/documentation

Creating a New Circuit with PLECS Blockset

Customizing the Circuit Block

You can customize the mask of the Circuit block to a certain extent, e.g. in
order to change the block icon or to define mask parameters. For information
on Simulink block masks please refer to the Simulink documentation.

Note You may not change the mask type or remove the callback from the ini-
tialization commands. Doing so will break the interface and may lead to loss of
data.

If you define mask parameters for the Circuit block, PLECS evaluates com-
ponent parameters in the mask workspace rather than the MATLAB base
workspace. The mask workspace contains both the mask parameters and any
additional variables defined by the mask initialization commands. For details
on parameter evaluation see “Specifying Component Parameters” (on page 50).

By default, a double-click on the Circuit block opens the schematic editor. This
can be changed by editing the OpenFcn parameter of the block. To change
the behavior so that a double-click opens both the schematic editor and the
mask dialog,

1 Select the block, then choose Block Properties from the Edit menu or
from the block’s context menu.

2 On the Callbacks pane of the block properties dialog, select OpenFcn
from the function list and change the content of the callback function to

plecs('sl',202); open_system(gcb,'mask');

Alternatively, you can change the behavior so that a double-click opens
only the mask dialog. Then, add a checkbox to the dialog that will open the
schematic editor when you click on it:

1 Select the block, then choose Block Properties from the Edit menu or
from the block’s context menu.

2 On the Callbacks pane of the block properties dialog select OpenFcn from
the function list and clear the content of the callback function.

3 Select the block, then choose Edit Mask from the Edit menu or from the
block’s context menu.

47

3 Using PLECS

4 On the Parameters pane of the mask editor add a checkbox parameter
with the prompt Open schematic and the variable name openschematic.
As a dialog callback for the new parameter enter

if (strcmp(get_param(gcb,'openschematic'),'on'))
set_param(gcb,'openschematic','off');
plecs('sl',202);

end

Using the Library Browser

In PLECS Blockset the library browser is opened by a double-click on the
Components block in the PLECS library. In PLECS Standalone it is opened
automatically when the program is started. It can always be re-opened by se-
lecting Library Browser in the Window menu.

You can navigate through the component library by clicking on the tree en-
tries. Alternatively, you can search for a specific component by typing part of
its name into the search bar.

Drag the components you need from the library browser into the schematic
editor.

48

Using the Library Browser

Note In PLECS Blockset you cannot place Simulink blocks in a PLECS
schematic or PLECS components in a Simulink model since both programs do
not share the same Graphical User Interface.

49

3 Using PLECS

Components

Specifying Component Parameters

Every component has a dialog box to view and modify the component param-
eters. To open the parameter dialog, double-click on a component or select the
component and choose Parameters... from the Edit menu or the component’s
context menu.

Most component parameters accept MATLAB expressions as values, provided
that they evaluate to an acceptable result. Parameter expressions are evalu-
ated when you start a simulation or update the Simulink model. In case an
error occurs during evaluation of the parameters, an error dialog appears and
the corresponding component is highlighted.

An exception to this behavior are parameters that affect the appearance of the
component such as the parameter Number of windings of the Mutual Induc-
tor (see page 501) or the parameter Width of the Wire Multiplexer (see page
720). Such parameters must be literal values and are evaluated immediately.

Integer values may be specified as decimal, binary or hexadecimal values.
Hexadecimal integers are prefixed by 0x, binary integers are prefixed by 0b.
The expressions 0xfa and 0b11111010, for example, both evaluate to 250.

50

Components

Using Workspace Variables in Parameter Expressions

Parameter expressions that are not evaluated immediately can include MAT-
LAB variables. Expressions are evaluated as a whole in one workspace. By
default, the evaluation workspace is the MATLAB base workspace. However,
you can define local mask workspaces for subsystems that will then be used
for the parameter evaluation in the underlying schematics. For information on
subsystem mask workspaces see “Mask Parameters” (on page 66).

You can also mask the Circuit block as a whole. This is necessary e.g. if you
want parameter expressions to be evaluated in the Simulink model workspace,
or when you use the sim command from within a MATLAB function and want
to access the function workspace. For more information see “Customizing the
Circuit Block” (on page 47).

Displaying Parameters in the Schematic

You can cause PLECS to display any component parameter beneath the block
icon in the schematic. You specify the parameters to be displayed using the
check boxes next to the edit fields in the dialog box. Parameter values can be
edited in the schematic directly by double-clicking them.

Changing Parameters of Multiple Components

You can simultaneously change the parameters of multiple components of the
same type. To do so, select the components, then double-click any of them or
choose Parameters... from the Edit menu or the components’ context menu.

In the parameter dialog for multiple components, parameters, for which the
selected components have different values, show a placeholder text multiple
values. If you leave this placeholder as is, the components retain their indi-
vidual values for this parameter when you apply any other changes that you
have made.

Changing Parameters During a Simulation

Parameters are evaluated once a new simulation is started. Their values re-
main constant throughout the simulation. Certain parameters can be changed
during the simulation, their value is used as soon as the change is applied.
Depending on the parameter type it may be necessary to reevaluate other
parts of the model, which may take some extra computation time.

51

3 Using PLECS

Parameters are changeable during the simulation if they do not change the
structure of the model. If, for example, a parameter value is a vector the ele-
ments of the vector may be changed, whereas the size of the vector must re-
main the same. Parameters that influence the number of terminals of a com-
ponent or the width of a signal cannot be changed during simulation.

Changing Component Names

Component names are edited by double-clicking them in the schematic. To
show or hide a component name, toggle Show name in the Format menu.

All component names in the same schematic must be unique and must contain
at least one non-space character. Trailing spaces are removed from the names.

Changing the Orientation of Components

You can change the orientation of a component by choosing one of these com-
mands from the Format menu:

• The Rotate command rotates a component clockwise 90 degrees (Ctrl-R).
• The Flip left/right command flips a component horizontally (Ctrl-F).
• The Flip up/down command flips a component vertically (Ctrl-I).

Note Unlike in Simulink, flipping a component is not equivalent to rotating it
180 degrees.

Getting Component Help

Use the Help button in the dialog box to get online help about the component.

52

Libraries

Libraries

Libraries enable you to ensure that the custom components or masked sub-
systems used in your circuit are always up-to-date. Or, the other way round,
if you are developing your own custom components you can use a library to
ensure that changes you make to your component models are automatically
propagated to a user’s circuit upon loading.

Creating a New Library in PLECS Blockset

To create a new component library, open the PLECS Extras library and copy
the PLECS Library block into a Simulink model or library. The Simulink
model must be named (i.e. saved) before you can copy components from the
component library.

To add the new library to the library browser it has to be added to the list of
user libraries in the PLECS Preferences (see chapter “Configuring PLECS” on
page 41 for details).

Creating a New Library in PLECS Standalone

Any model file in PLECS Standalone can be used as a library file. Addition-
ally it is also possible to use PLECS Blockset libraries in PLECS Standalone.
To make model file available as a library the file has to be added to the library
list in the PLECS preferences (see chapter “Configuring PLECS” on page 41
for details).

To create a new library file, create a new model file, copy the desired compo-
nents into it and save it in a directory on the library path. The library path is
also set in the PLECS preferences.

Creating a Library Reference

When you copy a library component – either into a circuit schematic or into
another or even the same component library – PLECS automatically creates
a reference component rather than a full copy. You can modify the parameters
of the reference component but you cannot mask it or, if it is already masked,
edit the mask. You can recognize a library reference by the string "(link)" dis-
played next to the mask type in the dialog box or by the string "Link" dis-
played in the title bar of the underlying schematic windows.

53

3 Using PLECS

The reference component links to the library component by its full path, i.e.
the Simulink path of the PLECS Library block and the path of the compo-
nent within the component library as they are in effect at the time the copy
is made. If PLECS is unable to resolve a library reference it highlights the
reference component and issues an error message.

You can fix an unresolved library reference in two ways

• Delete the reference component and make a new copy of the library compo-
nent.

• In PLECS Blockset, add the directory that contains the required Simulink
model to the MATLAB path and reload the circuit.

Updating a Library Reference

Library references are resolved upon loading of a circuit. Afterwards, any
changes that you make to a referenced library component are automatically
propagated to the referencing components when you start a simulation or (in
PLECS Blockset) when you update the simulation model.

Breaking a Library Reference

You can break the link between a library reference and the library component.
The reference then becomes a simple copy of the library component; changes
to the library component no longer affect the copy.

In order to break the link between a reference and its library component, se-
lect the reference component, then choose Break library link from the Sub-
system submenu of the Edit menu or the component’s context menu.

It is often desirable to break the links to all user-defined libraries in a model,
for example when sending a model to another PLECS user who does not have
all the libraries that the model depends on. This can be done by selecting
Break all library links... from the Edit menu. Library links to the PLECS
component library are not affected by this functionality.

54

Connections

Connections

Connections define the relationship and interaction between components.

Signal Connections and Physical Connections

Signals are drawn with green lines ending with an arrow head. They repre-
sent a directed flow of values from the signal output of one component to the
signal input of one or several other components. Values can be either scalars
or vectors. The width of a signal is determined when the simulation is started.

Physical connections represent energy flow between two points and do not
have an inherent direction. They are drawn in separate colors for the differ-
ent physical domains: black for electrical, red for magnetic, blue for thermal
and violet for mechanical. Physical connections can be created between physi-
cal terminals of the same domain.

Creating Connections

To create a new connection, move the mouse pointer over an unconnected ter-
minal, press the mouse button, and drag the mouse pointer to the desired
destination. If you drag the mouse pointer near a matching terminal, the
pointer shape changes to a double cross, and the two terminals will be con-
nected when you release the mouse button. If you drag the mouse pointer over
a component, the connection will be routed to the nearest matching terminal
(if any) of that component.

Creating Branches

Branches are used to connect more than two terminals. To create a branch
connection, place the mouse pointer on an existing connection or node where
you want the branch to start. Press the right mouse button and drag the
mouse pointer to the desired destination. Instead of the right mouse button
you can also use the left mouse button while holding down the Ctrl key.

Alternatively, you can also create a branch by clicking on an unconnected ter-
minal and dragging the mouse pointer to a matching connection or node.

55

3 Using PLECS

Automatic Creation of Connections

If you select a component and hold the Alt key while hovering the mouse
pointer over another component, the schematic editor suggests connections
between matching terminals or terminal groups of the two components. A ter-
minal group in this context is a contiguous set of terminals of the same kind
along one edge of a component. To create the connection(s), press the mouse
button. Only one pair of matching terminals or terminal groups is connected
at one time. If there are multiple candidates, the connection with the shortest
path is chosen.

This is illustrated in the figures below. First, the starting component, a volt-
age source, is selected. Next, the mouse pointer is moved to the destination
component, a resistor, while holding down the Alt key. The editor suggests a
connection between the closest two electrical terminals. Last, after a mouse
click, the connection is created, and the editor suggests another connection be-
tween the remaining two terminals.

You can also let the schematic editor create connections from multiple starting
components to a single destination component at once. This is useful e.g. to
combine the signal outputs of multiple meters into one Signal Multiplexer (see
page 582). First, select the many components, then move the mouse pointer
to the destination while holding down the Alt key. Press the mouse button to
create all connections at once.

56

Annotations

Editing Connections

After a connection has been created, you can change its path by moving indi-
vidual segments. To move a connection segment, click it with the left mouse
button, then drag it to the desired destination.

You can also move parallel segments of different connections simultaneously.
To do so, select the connections, then click on any one of the parallel segments
and drag it to the desired destination. The other segments will be shifted si-
multaneously while maintaining their relative distances.

Annotations

You can annotate schematics with text labels. Create an annotation by double-
clicking in an unoccupied area of a schematic and start typing. To finish edit-
ing, press the Escape key or click anywhere outside the annotation box.

You can move an annotation by selecting and dragging it with the mouse. To
edit an existing annotation, double-click it. Choose Text alignment from the
Format menu to change the text alignment of the annotation.

57

3 Using PLECS

Subsystems

Subsystems allow you to simplify a schematic by establishing a hierarchy,
where a Subsystem block is on one layer and the elements that make up the
subsystem are on another. Subsystems also enable you to create your own
reusable components. For more information see “Masking Subsystems” (on
page 61).

You can create a subsystem in two ways:

• Add a Subsystem block to your schematic, then open that block and add the
blocks it contains to the subsystem.

• Select a number of blocks, then group those blocks into a subsystem.

Creating a Subsystem by Adding the Subsystem Block

To create a new subsystem, first add a Subsystem block to the schematic, then
add the elements that make up the subsystem:

1 Copy the Subsystem block from the System library into your schematic.

2 Double-click on the Subsystem block in order to open it.

3 In the empty Subsystem window, build the subsystem. Use the different
port blocks (e.g. Signal Inport (see page 580), Signal Outport (see page 583)
or Electrical Port (see page 390)) to configure the interface of the subsys-
tem.

Creating a Subsystem by Grouping Existing Blocks

If a schematic already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Select the blocks and connections that you want to include in the subsystem
within a bounding box.

2 Choose Create subsystem from the Edit menu. PLECS replaces the se-
lected blocks with a Subsystem block.

58

Subsystems

Arranging Subsystem Terminals

When you add a port to a subsystem schematic, a corresponding terminal ap-
pears at a free slot on the border of the Subsystem block. If necessary, the
Subsystem block is resized automatically in order to accommodate the new
terminal.

You can move a terminal to another free slot on the border by dragging it with
the middle mouse button. While you hold down the mouse button, a circle
shows the free slot nearest to the mouse pointer. As an alternative you can
press the left mouse button while holding down the Shift key. When you re-
lease the mouse button, the terminal is moved.

The figures below show a Subsystem block before, during and after moving a
terminal.

Notice how the shape of the cursor changes to crosshairs as you move it into
the capture radius of the terminal. When you press and hold down the center
mouse button, the cursor shape changes to a pointing hand.

Resizing a Subsystem Block

To change the size of a Subsystem block, select it, then drag one of its se-
lection handles. While you hold down the mouse button, a dashed rectangle
shows the new size. When you release the mouse button, the block is resized.
The minimum size of a Subsystem block is limited by the number of terminals
on each side.

The figures below show a Subsystem block before, during and after resizing.

Notice how the terminals on the right edge of the Subsystem block are shifted
after you release the mouse button in order to fit into the new frame. The

59

3 Using PLECS

block height cannot be reduced further because the terminals cannot be
shifted any closer.

Placing the Subsystem Label

The label of a Subsystem block can be placed at any of the following nine po-
sitions: at the middle of the four edges, at the four corners, or in the center
of the block. To change the placement of the label, drag it to a new location.
While you hold down the mouse button, a dashed rectangle shows the new po-
sition. When you release the mouse button, the label is moved.

60

Masking Subsystems

Masking Subsystems

Masking a subsystem allows you to create a custom user interface for a Sub-
system block that hides the underlying schematic, making it appear as an
atomic component with its own icon and dialog box. Many of the components
in the PLECS component library are in fact masked subsystems.

To mask a subsystem, select the Subsystem block, then choose Create mask...
from the Subsystem submenu of the Edit menu or the block’s context menu.
The mask editor appears. The mask editor consists of five tabbed panes that
are described in detail below.

Mask Icon

The Icon pane enables you to create icons that show descriptive text or labels,
graphics and images.

Mask Editor Icon Tab

61

3 Using PLECS

Mask Icon Drawing Language

The Language selector lets you choose the programming language used for
the drawing commands. Choose Lua to create dynamic icons that can change
depending on user input. See “Getting Started with Lua” (on page 74) for a
brief introduction to this language. Choose Legacy to select the syntax used
by PLECS 4.1 and older.

Mask Icon Drawing Commands

The drawing commands available in the Lua language are described below. If
you enter more than one command, the graphic objects are drawn in the or-
der in which the commands appear. In case an error occurs during evaluation
of the commands, PLECS displays three question marks (? ? ?) in the mask
icon; if you hover the mouse over the subsystem block, a tooltip will show the
error message.

Text
The commands

Icon:text('text')
Icon:text(x, y, 'text')

display text in the center of the icon or centered around the coordinates x, y.
The text does not rotate with the icon; it is always displayed from left to right.
The second command can be followed by parameter/value pairs to specify addi-
tional properties listed in the table below.

Line
The command

Icon:line(xvec, yvec)

draws the line specified by the vectors xvec and yvec. Both vectors must
have the same length. Note that vectors are entered using curly braces, e.g.
{1, 2, 3}. The vectors may contain non-finite values such as 0/0 or 1/0.
When non-finite values are encountered, the line is interrupted and continued
at the next point that has finite values.

62

Masking Subsystems

Text Properties

Property Description

FontSize An integer specifying the font size of the text

TextFormat Specify the string PlainText to display the text as is (the
default) or RichText to enable HTML markup such as
 or .

Color A vector {r, g, b} of three integers in the range from 0 to
255 specifying the text color in RBG format

Patch

The command

Icon:patch(xvec, yvec)

draws a solid polygon with vertices specified by the vectors xvec and yvec.
Both vectors must have the same length. Note that vectors are entered using
curly braces, e.g. {1, 2, 3}.

Circle

The command

Icon:circle(x, y, r)

draws a circle with the center coordinates x, y and the radius r.

Ellipse

The command

Icon:ellipse(x, y, rx, ry)

draws an ellipse with the center coordinates x, y and the radii rx and ry.

63

3 Using PLECS

Arc
The command

Icon:arc(x, y, rx, ry, start, span)

draws an elliptical arc with the center coordinates x, y and the radii rx and ry
beginning at the start angle (in degrees) and extending span degrees counter-
clockwise. The 0 degree angle is at 3 o’clock. Clockwise arcs can be drawn us-
ing a negative span angle.

Color
The command

Icon:color(r, g, b)

changes the current drawing color. The new color is given by r, g and b which
specify the red, green and blue components. Each value is given as an integer
in the range from 0 to 255.

Image
The commands

Icon:image(xvec, yvec, 'filename')
Icon:image(xvec, yvec, 'filename', 'on')

read an image from the file filename and display it on the mask icon.
The parameter filename must be either an absolute filename (e.g.
C:\images\myimage.png) or a relative filename that is appended to the
model’s directory (e.g. images\myimage.png). Supported image formats are
BMP, GIF, JPG and PNG.
The two-element vectors xvec and yvec specify the minimum and maximum
coordinates of the image’s extent. Note that vectors are entered using curly
braces, e.g. {-10, 10}.
Use the optional flag 'on' to indicate that the image should rotate or flip to-
gether with the mask icon. By default, this is set to 'off', and the image ori-
entation remains fixed.
Only one image can be displayed on a mask icon; if you use multiple image
commands, only the last one will be effective.

64

Masking Subsystems

Querying Parameter Values
The command

Dialog:get('variable')

returns the string value of the mask parameter associated with the variable
variable. Note that the parameter values are not evaluated. Thus, if the user
enters e.g. 2*2, the return value will be '2*2' and not '4'. The return value
for a combobox parameter is a string containing the 1-based index of the cho-
sen option or the expression entered by the user.

Legacy Command Syntax
The legacy command syntax is listed in the following table. The meaning of
the command arguments is analogous to the Lua syntax. Vector parameters
are entered using square brackets with optional commas for separating the
elements, e.g. [1, 2, 3] or [3 4 5]. Note that the legacy syntax does not
support all commands and options. Single-line comments start with a percent
sign (%).

Legacy Command Syntax

Command Syntax

Text text(’text’)
text(x, y, ’text’)

Line line(xvec, yvec)

Patch patch(xvec, yvec)

Circle circle(x, y, r)

Color color(r, g, b)

Image image(xvec, yvec, imread(’filename’))
image(xvec, yvec, imread(’filename’), ’on’)

Mask Icon Coordinates

All coordinates used by the mask drawing commands are expressed in pixels.
The origin of the coordinate system is always the center of the block icon; it is

65

3 Using PLECS

adjusted when the block is resized. In an unrotated and unflipped block, the
x-axis stretches from the left towards the right, and the y-axis stretches from
the top towards the bottom.

Use the icon frame and/or the terminal locations as reference points in order
to position graphic elements. Both the frame and the terminals snap to a grid
of 10 by 10 pixels.

Note PLECS expects you to confine icon drawings to the boundaries of the
subsystem frame. PLECS will not clip your drawings to the subsystem frame,
but if you draw outside the frame, the drawings will not be erased properly e.g.
when the subsystem is moved.

Mask Icon Properties

Show subsystem frame
The subsystem frame is the rectangle that encloses the block. It is drawn
if this property is set, otherwise it is hidden.

Hide terminal labels
This property controls whether the terminal labels underneath the icon
are shown or hidden. A terminal label is only shown if this property is un-
set and the name of the corresponding port block is visible.

Icon rotates
If drawing commands are provided, this property determines whether the
drawn icon rotates when the component is rotated. The drawn icon re-
mains stationary if this property is unchecked.

Mask Dialog

The Dialog pane enables you to define the parameters that will appear in the
dialog box of the masked subsystem.

66

Masking Subsystems

Mask Editor Dialog Tab

Prompts and Associated Variables

Mask parameters are defined by a Prompt, a Variable and a Type. The
prompt provides information that helps the user identify the purpose of a pa-
rameter. The variable name specifies the variable that will be assigned the
parameter value.

Note In PLECS Standalone, the maximum length of variable names is 63
characters. This is due to the way, in which a mask workspace is stored in
PLECS and exchanged with Octave. It is advisable to observe this limit also
in PLECS Blockset to ensure that a model can be exchanged with PLECS Stan-
dalone.

Mask parameters appear on the dialog box in the order they appear in the

67

3 Using PLECS

prompt list. You can add or remove parameters or change their order by us-
ing the four buttons to the left of the prompt list.

Parameter Types

Parameters of type Edit are shown as a text edit field. The entered text is in-
terpreted as a MATLAB/Octave expression and is usually expected to evaluate
to a numeric value. Parameters of type String are shown as a combination of
a text edit field and a switch that determines whether the entered text should
be interpreted as a literal string or as a variable or expression that evaluates
to a string. Parameters of type Combo Box offer a choice of predefined val-
ues. The possible values are defined in the Combo Box values field with
each line representing one value. Parameters of type Check Box can be set
to false or true. Parameters of type Thermal allow to specify a thermal de-
scription. See section “Thermal Description Parameter” (on page 123) for more
details.

Tab Names

You can group parameters into separate tabs shown in the parameter dialog
by assigning a tab name in the Tab column. All parameters that have the
same tab name will appear on the same tab page in the parameter dialog.

Tunable Parameters

By default, mask parameter values cannot be modified during a simulation.
However, if you check the box in the Tunable column, the corresponding pa-
rameter will be made tunable so that you can in fact modify it interactively
during a simulation by entering a new value in the parameter dialog. When-
ever you change the parameter, PLECS will re-evaluate the parameter vari-
able and the mask initialization commands and propagate the new variable
values to the underlying components, which in turn must have tunable pa-
rameters. If a changed variable is used in a non-tunable component parame-
ter, the change will have no effect until the simulation is restarted.

Dialog Callback

The dialog callback is a Lua function that is executed whenever the user
changes a mask parameter. You can use it to disable or hide a parameter or
change its value depending on the value of another parameter.

68

Masking Subsystems

Querying Parameter Values

The command

Dialog:get('variable')

returns the string value of the mask parameter associated with the variable
variable. Note that the parameter values are not evaluated. Thus, if the user
enters e.g. 2*2, the return value will be '2*2' and not '4'. The return value
for a combobox parameter is a string containing the 1-based index of the cho-
sen option or the expression entered by the user.

Setting Parameter Properties

The command

Dialog:set('variable', 'property', value, ...)

changes one or more properties of the mask parameter associated with the
variable variable. The properties are listed in the following table.

Parameter Properties

Property Description

Value A string specifying the parameter value

Enable A Boolean (i.e. true or false) specifying the enable state of the
parameter. A disabled parameter is greyed out in the dialog
and cannot be modified.

Visible A Boolean (i.e. true or false) specifying the visibility of the
parameter in the dialog

Note Parameters that are disabled or invisible are not evaluated, and the pa-
rameter variables are assigned a NaN value (not a number).

69

3 Using PLECS

Hiding, Showing and Moving Terminals
The command

Block:showTerminal('name', flag)

shows or hides the terminal named name depending on the boolean value flag.
The companion port of a hidden terminal acts in the same way as if the termi-
nal was shown but unconnected.

The command

Block:moveTerminal('name', x, y)

moves the terminal named name to the relative coordinates x, y with respect
to the unrotated and unflipped block. Note that the terminal rotation is not
changed.

Mask Workspace

Variable Scope

PLECS associates a local variable workspace with each masked subsystem
that has one or more mask parameters defined. Components in the underlying
schematics can access only variables that are defined in this mask workspace.

Initialization Commands

Mask initialization commands are defined on the Initialization pane. They
are evaluated in the mask workspace when a simulation is started. You can
enter any valid MATLAB/Octave expression, consisting of MATLAB/Octave
functions, operators, and variables defined in the mask workspace. Variables
defined in the base workspace cannot be accessed. The dialog parameter vari-
ables are listed on the left hand side of the tab.

You can use mask initialization commands to check the user input, e.g.
whether a variable value is within a certain range, or to define additional
workspace variables that may be derived from mask parameters.

To show an error message in the Diagnostics window, e.g. that a certain mask
parameter value is not valid, use the command

error('error message')

70

Masking Subsystems

Mask Editor Initialization Tab

To show a warning message in the Diagnostics window, use the command

plecs('warning','warning message')

Note that the native MATLAB/Octave command warning will only print the
warning message to the MATLAB command window or the Octave console.

Note In PLECS Standalone, the maximum length of variable names is 63
characters. This is due to the way in which a mask workspace is stored in
PLECS and exchanged with Octave. It is advisable to observe this limit also
in PLECS Blockset to ensure that a model can be exchanged with PLECS Stan-
dalone.

71

3 Using PLECS

Mask Probe Signals

The Probes pane enables you to define the probe signals that the masked
subsystem will provide to the PLECS Probe. Mask probe signals appear in
the probe editor in the order they appear in the mask signal list. You can add
or remove signals or change their order by using the four buttons to the left of
the signal list.

Mask Editor Probes Tab

Mask probe signals are defined as vectors of probe signals from components
below the subsystem mask. For this reason the controls in the lower half of
the dialog are identical to those of the probe editor. In order to define a mask
signal, select the signal in the list and then drag the desired components into
the dialog window. The new components are added to the bottom of the list
of probed components. Next, select the components one by one and enable
the desired component signals in the list on the right side by using the check
boxes.

72

Masking Subsystems

Mask Documentation

The Documentation pane enables you to define the descriptive text that is
displayed in the dialog box of the masked subsystem.

Mask Editor Documentation Tab

Mask Type

The mask type is a string used only for purposes of documentation. PLECS
displays this string in the dialog box and appends "(mask)" in order to differ-
entiate masked subsystems from built-in components.

Mask Description

The mask description is informative text that is displayed in the dialog box in
the frame under the mask type. Long lines of text are automatically wrapped

73

3 Using PLECS

to fit into the dialog box. You can force line breaks by using the Enter or Re-
turn key.

Unprotecting Masked Subsystems

If you define a mask icon for a Subsystem block, PLECS automatically pro-
tects the block and the underlying schematic. You can no longer resize the
Subsystem block or modify the sub-schematic. The purpose of this protection
is to prevent the user from making unintentional changes that might render
the icon useless.

If you want to change a masked Subsystem block, you can unprotect it by
choosing Unprotect from the Subsystem submenu of the Edit menu or the
block’s context menu. You can later protect it again by choosing Protect from
the same menus.

Getting Started with Lua

Lua is a simple yet powerful open-source scripting language. This section in-
troduces you to the basic concepts that you are likely to need in order to cre-
ate dynamic subsystem masks. For a full reference please visit the Lua site at
http://www.lua.org.

Types and Variables

Lua is a dynamically typed language, which means that types are not asso-
ciated with variables but only with values. To define a variable, you simply
assign a value to it.

By default, Lua declares all variables as global. However, PLECS executes
Lua code in a protected environment that forbids the creation or modification
of global variables. Therefore, you must explicitly declare variables as local
using the local keyword, e.g.

local a = "a string"

The most basic types in Lua are: nil, boolean, number, string and table.
You can query the type of a value with the function type which returns the
type name as a string.

Nil Nil is a type with the single value nil. It is used to represent the ab-
sence of a useful value.

74

http://www.lua.org

Masking Subsystems

Booleans The Boolean type has two values false and true. It can be used
in conditional expressions. If you use other types in conditional expressions,
beware that Lua considers only the Boolean false and nil as false and any-
thing else as true. In particular, both the numerical 0 and the empty string ”
or "" are considered true in conditional tests.

Lua supports the logical operators and, or and not.

Numbers Lua differentiates between (double-precision) floating point num-
bers and (64-bit) integer numbers. Numerals with a decimal point or an expo-
nent are considered floats; otherwise, they are treated as integers.

Strings String literals in Lua can be delimited by single or double matching
quotes:

local a = "a string"
local b = 'another string'

The difference between the two kinds is that inside one kind of quotes you can
use the other kind of quote without needing to escape it. The escape character
is the backslash (\), and the common C escape sequences such as \n for new-
line are supported.

Long strings literals are delimited with matching double square brackets that
enclose zero or more equal signs, e.g. [[...]] or [==[...]==]. They can span
several lines and do not interpret escape sequences.

Tables Tables are Lua’s generic data structuring mechanism. They are used
to represent e.g. arrays, sets or records. A table is essentially an associative
array that accepts as keys not only numbers or strings but any other value ex-
cept nil. A table is constructed with curly braces and a sequence of key/value
pairs, e.g.

a = { x = 10, y = 20 }

A numerical vector as used in the mask icon drawing commands is just a ta-
ble with 1-based consecutive integer keys and numeric values. It can be con-
structed using the shorthand form of omitting the keys and just specifying the
values:

a = { 1, 2, 3 }

Alternatively, a numerical vector can be constructed using the following
PLECS specific syntax extension:

75

3 Using PLECS

a = Vector{ 1, 2, 3 }

A vector constructed in this way can be added to or multiplied with a scalar
value. This is especially helpful in icon drawing functions if the graphic object
shall be displaced or scaled:

a_x = Vector{ 1, 2, 3 }*zoom_factor + x_offset
a_y = Vector{ 4, 5, 6 }*zoom_factor + y_offset

Comments

A simple comment starts anywhere with two consecutive hyphens (--) and
runs until the end of the line. Long comments start with two hyphens fol-
lowed by two square brackets (--[[) and continue until the first occurrence
of two closing square brackets (]]).

A common trick is to use --]] to end a long comment to quickly comment and
uncomment a block of code:

--[[
Icon:line({-10, 10}, {-10, 10}) -- commented out
--]]

To un-comment the code block, prepend another hyphen to the first line:

---[[
Icon:line({-10, 10}, {-10, 10}) -- will be executed
--]]

In the first example, the --[[starts a long comment that continues until (and
including) the]] in the third line. In the second example, the first two hy-
phens start an ordinary single-line comment, and so the second line is not
commented out. The two hyphens at the beginning of the third line again
start a single-line comment. Without these hyphens, the unpaired closing
square brackets in the third line would cause a syntax error.

Statements

Lua does not need an explicit separator between consecutive statements, but
you can use a semicolon if you wish. Also, line breaks are treated like ordi-
nary white space, so you can split a single statement into multiple lines with-
out having to use a special continuation mark.

76

Masking Subsystems

Relational Operators

Lua supports the following relational operators:

< > <= >= == ~=

Relational operators always return a Boolean value. The == operator tests for
equality and the ~= operator for inequality. They can be applied to any two
values. If the values have different types, Lua considers them not equal. Oth-
erwise, they are compared according to their type.

Functions

A function is defined as follows

local function drawTriangle(x, y)
Icon:line(Vector{0, 8.66, -8.66, 0}+x,

Vector{-10, 5, 5, -10}+y)
end

As with variables, the local keyword is required because without it the func-
tion would be declared globally, which PLECS forbids. A function definition
consists of the keyword function, a name (drawTriangle), a list of parame-
ters (x, y), a body, i.e. a list of statements, and the terminator end. Parame-
ters are local variables that are initialized with the values of the arguments
passed in the function call.
The example above defines a function that draws a triangle with the center
point x, y. The function can be called as follows

drawTriangle(-10, 0)
drawTriangle(10, 0)

A function can also return values using the return statement:

local function sum(values)
local result = 0
for i = 1, #values do

result = result + values[i]
end
return result

end

local x = sum({1, 2, 3}) -- x will be 6

77

3 Using PLECS

Control Structures

Lua provides control structures for conditional execution and iteration.

if then else The if statement tests its condition and executes the then
branch if the condition is true and otherwise the else part. The condition
can result in any value, but as mentioned earlier, Lua treats all values other
than nil and false as true. In particular, both the numerical 0 and the empty
string ('') are treated as true.

if Dialog:get('choice') == '1' then
Icon:text('+')

else
Icon:text('-')

end

Multiple conditions can be tested with the elseif statement. It is similar to
an else followed by an if but avoids the need for and extra end:

if Dialog:get('choice') == '1' then
Icon:text('+')

elseif Dialog:get('choice') == '2' then
Icon:text('-')

else
Icon:text('+/-')

end

for The for statement has the following form:

for x = -10, 10, 5 do
Icon:line({x, x}, {-10, 10})

end

The loop variable, x, which is implicitly local to the loop, is successively as-
signed the values from -10 to 10 with an increment of 5, and for each value
the loop body is executed. The result of the example will be five parallel ver-
tical lines. The step value is optional; if it is omitted, Lua will assume a step
value of 1.

Lua also provides other control structures (iterator-based for, while, repeat).
However, these are not relevant for dynamic masks.

78

Circuit Browser

Circuit Browser

The Circuit Browser enables you to navigate a circuit diagram hierarchically.
To display the Circuit Browser, select Show circuit browser from the View
menu of the schematic editor. Note that this option is only available from the
main schematic window, i.e. the Circuit Browser will only be shown once for
every model.

The editor window splits into two panes. The left pane shows the Circuit
Browser, the right pane displays the current schematic. The Circuit Browser
shows either a hierarchical or a flat list of all components and subsystems in
the circuit.

Selecting a component in the Circuit Browser will also select the same com-
ponent in the schematic and vice versa. By dragging the mouse or by holding
down the shift key you can select multiple components. If the selected compo-
nents are compatible with each other, their parameters can be edited simul-
taneously. The parameter dialog is displayed on double clicking the selected
components or on clicking the option Component parameters. . . from the
context menu.

The schematic is automatically updated to show the last selected component.
The schematic of a specific subsystem can be displayed by double clicking it in
the Circuit Browser.

The components can be sorted by clicking on one of the column headers. To
quickly find e.g. all diodes in a circuit, switch to the flat view (see below) and
sort it by clicking on Type. This will group all diodes together in the list.

79

3 Using PLECS

Viewing Options

In the toolbar of the Circuit Browser, several viewing options are available.

View As Tree

The first two buttons in the toolbar switch between hierarchical and flat view.
In the hierarchical (or tree) view, the first entry corresponds to the top-level
schematic of your circuit. A “+” or “–” sign next to a name indicates that the
corresponding schematic contains one or more subsystems. By double-clicking
on the entry you can expand or collapse the list of these subsystems. This will
also show the schematic of the subsystem.

View As Flat List

The flat view lists all components of the entire circuit except the top-level cir-
cuit itself. This view has an additional column that shows the path of each
component.

Look Under Masks

By default, the Circuit Browser treats a masked subsystem like a component,
i.e. it will not list the contents of the subschematic. You can change this be-
havior by toggling this button.

Follow Library Links

By default, the Circuit Browser treats a library link like a component, i.e. it
will not list the contents of the subschematic. You can change this behavior by
toggling this button.

Filter

The Filter button lets you choose, which components are shown in the Circuit
Browser. When filtering is turned off, all components are shown. By clicking
on the small arrow symbol, you can select between two filtering modes:

80

Circuit Browser

Show only subsystems When this mode is active, the Circuit Browser
shows only subsystems.

Show assertions When this mode is active, the Circuit Browser shows only
assertion blocks and components with attached assertions (see “Assertions”
on page 85). To view the associated assertion parameters, double-click on the
entry in the Circuit Browser.

Custom filter When this mode is active, a search bar is shown. The Circuit
Browser shows only those components that match the search criterion or all
components if the search string is empty.

The default filtering mode of the Circuit Browser can be specified in the
PLECS preferences (see section “Configuring PLECS” on page 41).

81

3 Using PLECS

PLECS Probe

The PLECS Probe enables you to monitor various quantities in a circuit. Most
intrinsic components provide one or more probe signals that describe their cur-
rent state, input, or output signals. For instance, an inductor provides a probe
signal that monitors the inductor current; the probe signals of a diode are the
diode voltage, current and conduction state.
The PLECS Probe can either be used in a PLECS schematic or – for PLECS
Blockset – in a Simulink model. To use the PLECS Probe in a schematic use
the Probe block from the “System” Library.
In order to use the PLECS Probe in Simulink, drag the Probe block from the
PLECS library into the Simulink model that contains the circuit which you
want to probe. Double-click the icon to open the probe editor window.

This window contains the following information.
Probed circuit For the Simulink Probe the text box across the top shows the
name of the circuit that you are probing and its path, i.e. the Simulink system
containing the Circuit block.

Note A Simulink Probe must be in the same Simulink model as the Circuit
block whose components you want to monitor. In addition, a Simulink Probe
block only accepts components from one single Circuit block at a time.

82

PLECS Probe

Probed components The list box on the left side shows the components
that you have selected for probing. The components are identified by their
type, name and path within the circuit. For adding components to this list,
simply select them in the schematic editor and drag them into the probe edi-
tor. The new components are appended at the bottom of the list. You can re-
order the components using the Up , Down and Remove buttons. If
you click on the Show component button, the currently selected compo-
nent will be shown in the schematic editor.

Component signals The list box on the right side shows the available probe
signals for the selected component. Use the check boxes next to the signal
names in order to enable or disable individual signals. You can simultane-
ously edit the signal states of several components provided that the compo-
nents have the same type. In order to select multiple components, hold the
Shift or Ctrl key while clicking on a list entry.

For PLECS Probes that are used in a PLECS schematic there are two ways to
add components to the probe: Either drag them into the Probed components
area in the probe dialog (see above) or drop them onto the Probe block directly.

The output of the Probe block is a vector signal consisting of all enabled probe
signals. If no probe signal is enabled a warning message will be printed to the
command window and the block will output a scalar zero.

Copying a Probe

When you copy a PLECS Probe in a PLECS schematic, one of the following
three cases can apply:

1 If a probed component is copied simultaneously with a Probe block referring
to it, the copied Probe block will refer to the copy of the component.

2 Else, if the Probe block is copied within the same circuit, the copied Probe
block will refer to the original component.

3 Else (i.e. if the Probe block is copied into a different circuit), the probe refer-
ence will be removed.

For technical reasons it is not possible to determine whether a PLECS Probe
for Simulink is copied simultaneously with a Circuit block. Therefore, PLECS
only distinguishes between the following two cases:

1 If you copy a Simulink Probe block within the same model, the copied Probe
block will always refer to the original components.

83

3 Using PLECS

2 If you copy a Probe block into a different model, all data is cleared from the
copied block.

84

Assertions

Assertions

Assertions allow you to monitor arbitrary signals during a simulation and
raise a warning or error message if they fail to meet a given condition. For in-
stance, imagine you want to ensure that a certain component operates within
a safe temperature range. Once the temperature leaves the defined operating
range, you would like to receive a notification. In PLECS, this can be achieved
using assertions.

Assertions are conditions that are assumed to hold during the entire simu-
lation of a model. When a condition becomes invalid, i.e. when an assertion
fails, PLECS executes a predefined action. The possible actions are:

• to ignore the failed assertion
• to add a warning message to the diagnostics window
• to add a warning message to the diagnostics window and additionally

pause the simulation
• to add an error message to the diagnostics window and immediately stop

the simulation

There is a global model parameter that allows you to override the actions de-
fined locally in the individual assertions (see “Simulation Parameters” on page
103).

Note In PLECS Standalone, assertions are partially disabled during analy-
ses (see “Analysis Tools” on page 161) and simulation scripts (see “Simulation
Scripts” (on page 233)). In a Steady-State Analysis, assertions are only enabled
during the final period shown at the end of the analysis. Assertions are not al-
lowed to pause the Steady-State analysis, but it may be aborted if an assertion
triggers an error message. In all other analyses, assertions are entirely dis-
abled. Assertions are not allowed to pause a simulation script, but a script may
be aborted if an assertion raises an error message.

PLECS provides two kinds of assertions: built-in assertion blocks and asser-
tions that can be established on components based on their probe signals.

85

3 Using PLECS

Assertion Blocks

There is one basic Assertion block (see page 323) that interprets its input sig-
nal as a boolean value. While the value is non-zero, the assertion holds; when-
ever the input becomes zero, the assertion fails.

Because assertions are often used to ensure that a signal is within a certain
range or below or above a certain limit, PLECS provides additional assertion
blocks to directly do this. These blocks are:

• Assert Dynamic Lower Limit (see page 320)
• Assert Dynamic Range (see page 321)
• Assert Dynamic Upper Limit (see page 322)
• Assert Lower Limit (see page 324)
• Assert Range (see page 325)
• Assert Upper Limit (see page 326)

Component Assertions

PLECS also provides the possibility to add assertions directly to components.
This can be used to define a valid range for any probe signal of a component.
To add assertions to a component, open its parameter dialog and click on the
Assertions tab. If the parameter dialog of a component does not provide this
tab, it is not possible to add assertions.

Use the “+” and “-” buttons to add or remove assertions. In the different
columns, the parameters for the assertions can be provided: the probe signal

86

Assertions

that is limited by the assertion, the lower and upper limits, whether the lim-
its should be inclusive, and the action executed when the assertion fails (see
above). If the limits are included (by setting a check mark in that column), the
limits themselves are considered part of the valid range, otherwise the signal
has to be strictly within the limits. The values -inf and inf may be used to
disable the lower or upper limit, respectively.

Locating Assertions

To quickly get an overview of all assertions that are defined in a model, open
the Circuit Browser (see page 79) and set the filter option to Show asser-
tions. The Circuit Browser will then list only assertion blocks and compo-
nents, for which assertions have been defined.

87

3 Using PLECS

Controlling Access to Circuits and Subsystems

PLECS allows you to control user access to individual subsystems or to com-
plete circuits. In particular, you can prevent a user from viewing or modifying
a schematic while still allowing the user to simulate a circuit.

To change the access settings of a circuit, open the permissions dialog box by
choosing Circuit permissions... from the File menu. To change the settings
of a subsystem, choose Permissions... from the Subsystem submenu of the
Edit menu or the block’s context menu.

You can grant or deny the following privileges:

• The View privilege controls whether a user can view the schematic of a cir-
cuit or subsystem.

• The Modify privilege controls whether a user can modify the schematic of
a circuit or subsystem. For a subsystem it also controls whether the mask
definition may be modified.

If you apply access restrictions you will be asked for a password to prevent an
unauthorized person from lifting these restrictions. The access settings can
only be changed again if the correct password is provided.

Encrypting Circuits and Subsystems

When PLECS saves a circuit with access restrictions to the Simulink model
file, it encrypts the respective sections to protect the circuit description from
unauthorized access.

88

Exporting Circuits for the PLECS Viewer

Exporting Circuits for the PLECS Viewer

This section applies only to PLECS Blockset.

The PLECS Viewer enables you to share your circuit models with users that
do not have a license for PLECS. The PLECS Viewer is available for free and
allows a user to simulate and optionally view – but not modify – a circuit
model, provided that it bears a special signature. In particular, the PLECS
Viewer does not permit changing a component parameter, nor is it possible to
specify parameters as variables from the MATLAB workspace.

In order to export a circuit for use with the PLECS Viewer, choose Export
for PLECS Viewer from the File menu. If the Simulink model has unsaved
changes you will be asked to save them before you can proceed. Afterwards
a dialog allows you to specify a filename for the Viewer version of the model.
PLECS will then automatically copy the current model to the specified export
file, replace component parameters that access the MATLAB workspace with
their actual values, break any links to component libraries, and sign it for use
with the Viewer. The original model itself remains unchanged.

You can also export a model using the MATLAB command line interface. The
command line interface also allows you to protect any PLECS circuit against
opening in the PLECS Viewer. See section “Export for PLECS Viewer” (on
page 237) for more details.

Note An exported circuit can not be changed by anyone – not even by its cre-
ator. It is therefore advisable that you keep the original model for later use and
that you choose export filenames that are easily distinguished from the origi-
nal.

89

3 Using PLECS

Exporting Schematics

PLECS allows you to export the schematic to a bitmap or PDF file for docu-
mentation. The supported image formats are:

• JPEG (Bitmap)
• TIFF (Bitmap)
• PNG (Bitmap)
• SVG (Scalable Vector Graphics)
• PDF (Portable Document Format)

To export a schematic choose Export... from the File menu and select your
desired output format. A second dialog lets you specify the export options for
the specific format, e.g. the bitmap resolution.

It is also possible to copy schematics to other applications directly via the
clipboard. To copy an image of the current schematic to the clipboard choose
Copy as image from the Edit menu, then select Paste from the Edit menu
in your target application.

90

Using the PLECS Scope

Using the PLECS Scope

The PLECS scope is used to display simulation results and offers powerful
zooming and analysis tools to simplify viewing and processing results. The
PLECS scope can be placed on the Simulink worksheet or in the PLECS cir-
cuit. The appearance of the PLECS scope is depicted below. The scope con-
tains a plot area and optional Zoom view, Saved view and Data view windows.

Getting Started

To use the scope, drag the scope block from the PLECS library onto your
worksheet or schematic diagram. The scope block for Simulink can be found
in the top level of the PLECS library. The scope block for a PLECS circuit is
located in the PLECS Sources & Meters library.

91

3 Using PLECS

Double clicking on the Scope block opens the Scope window. The main window
of the scope can contain multiple plots. Plots can be quickly added or removed
by right clicking the plot area and selecting Insert plot above, Insert plot
below or Remove plot from the context menu.

The optional Zoom view, Saved view and Data view windows can be opened
by right-clicking on the toolbar area. They can also be opened from the View
menu. These optional windows can be docked and undocked from the main
window. To dock them in main window, simply drag them to the desired loca-
tion inside the main window.

Zoom Operations

Zooming is performed by clicking on the plot area and dragging the mouse un-
til the desired area is selected. Two zoom modes exist: Constrained Zoom and
Free Zoom. The zoom mode is selected using the toolbar button. To temporar-
ily switch zoom modes, the Ctrl key (cmd key with macOS) can be pressed.

Constrained Zoom

With Constrained Zoom, zooming is only performed in the x or y direction.
The zoom direction is selected by moving the mouse horizontally or vertically.

Free Zoom

With Free Zoom mode activated, the zoom area is defined by dragging the
zoom cursor over a certain portion of the plot.

Zoom to Fit

Zoom to fit will fit the entire waveform into the plot window.

Zoom to Specification

A zoom range can also be manually specified. Double-clicking on the x or y
axis opens a dialog in which the x or y range of the zoom area can be entered.

92

Using the PLECS Scope

Previous View, Next View

Every time a zoom action is performed, the view is stored in the view history.
The previous and next view buttons allow you to navigate backwards and for-
wards through the view history.

Panning

A zoom area can be panned by dragging the x or y axes of the plot with the
hand symbol that appears.

Zoom Area Window

The zoom area window displays the entire waveform and highlights the zoom
view that is displayed in the plot window. Constraint Zoom and Free Zoom
can also be performed in the zoom area window. The zoom area window is ac-
tivated by right clicking on the toolbar.

Scrolling

During a simulation, if the current x-axis range is smaller than the simulation
time span, the scope will automatically scroll the x-axis so that the current
simulation time step is always shown. The scrolling mode (paged or continu-
ous) may be specified in the scope parameters.

Scrolling is suspended if you manually zoom or pan so that the current simu-
lation time is greater than the right x-axis limit. This is indicated by a stack
of small arrows at the right border of the plot. Scrolling is resumed if you
click on these arrows or if you zoom or pan so that the current simulation
time is less than the right x-axis limit.

Y-Axis Auto-Scaling

The scope features a dynamic auto-scaling mode, in which the y-axis limits
are always adjusted to the currently visible waveforms. The state of the auto-
scaling mode is indicated by a small semi-transparent icon (/) in the top-
right corner of a plot. Clicking on this icon will toggle the state. Auto-scaling
will be enabled for all plots in the scope if you click the Zoom to Fit button.
If you zoom in the y direction of a plot, auto-scaling will be disabled for that

93

3 Using PLECS

plot. The initial auto-scale state at simulation start is specified for each plot
individually in the scope parameters (see page 573).

Changing Curve Properties

By default, the curves for the different signals and/or traces in a plot are
drawn with a pen that is defined by the palette selected in the PLECS pref-
erences (see “Scope Colors” on page 43).

To change individual curve properties (color, line style and width), right-click
on a plot and select Edit curve properties from the context menu. This will
open a table listing the properties of all visible curves. To change a particular
property, double-click on the corresponding table cell.

Locally changed properties are highlighted with a white background and
are stored persistently in the model file. In contrast, properties that are de-
fined by the global scope palette have a grey background. To remove all local
changes click on Restore Defaults.

Spreading Signals

When using a single plot to display multiple signals that assume only a small
number of discrete values (such as gate signals), it can be difficult to prop-
erly see the value that a particular signal has. You can have the scope au-
tomatically separate the signals in a plot by offsetting and scaling them ap-
propriately. All signals are scaled by the same factor and the offsets are dis-
tributed evenly in order to maintain the proportions between the signal. Verti-
cal scrolling and zooming is disabled in this mode.

To enable signal spreading, right-click on a plot and select Spread signals
from the context menu. While spreading is enabled, the y-axis will only dis-
play the zero-lines for the individual signals, and zooming in the y-direction is
disabled.

Cursors

The cursors are used for measuring waveform values and analyzing the sim-
ulation results. Cursors can be positioned by dragging them to a specific time
location, or by manually entering a value in the Time row in the Data Win-
dow.

94

Using the PLECS Scope

When the cursors are moved, they will snap to the nearest simulation time
step. To place the cursors arbitrarily, hold down the Shift key while moving
the cursor. The values in the data window will be displayed in italics to indi-
cate they are interpolated from the two nearest time steps.

Data Window

When the cursors are activated, the data window appears if it was not already
open. By default, the data window displays two columns in which the time
and data value of each signal at the position of each cursor are given. The sig-
nal names are also displayed and can be modified by double-clicking on the
name.

A right-click into the Data Window shows a context menu. Selecting “Copy
to Clipboard” copies the current contents of the table to the system clipboard.
Afterwards the data can be pasted into other applications, e.g. a spreadsheet
tool or word processor.

Signal Type

A small icon that represents the signal type is shown next to the signal name
in the data view window. Signals can be of the continuous, discrete or impulse
type. The scope automatically determines the signal type from the port set-
tings of the connected signal to ensure the signal is displayed correctly. The
signal type can be overridden if necessary by clicking on the signal type icon.

Analyzing Data

Right-clicking on the data view header line in the data view window allows
for additional data analysis columns to be displayed. For example, difference,
RMS, min, max, and total harmonic distortion (THD) analysis can be per-
formed. The analysis is performed on the data between the two cursors. For
meaningful RMS and THD values the cursor range must be equal to the pe-
riod of the fundamental frequency.

Locking the Cursors

Locking the cursors can be useful for performing measurements over a fixed
time period, such as the time period of an ac voltage. When dragging one of
the locked cursors, the other cursor will be moved in parallel at a specified

95

3 Using PLECS

time difference. To lock the cursors, the Delta column in the Data Window
must be made visible by right-clicking on the table header. The desired cursor
distance can be entered in the Time row of the Delta column. The cursors
can be unlocked by double-clicking on the lock icon in the Delta column.

Fourier Analysis

A Fourier analysis of the data in the current cursor range is accessible from
the View menu. The use of the Fourier analysis is detailed in section “Using
the Fourier Analysis” (on page 98).

Saving a View

A particular zoom view can be saved by pressing the eye button. The saved
views window will appear if it was not already displayed and the new view
will be added to the saved views list. To access a particular saved view, click
on the view name in the saved views window. Saved views can be renamed by
double clicking the name of the view, and reordered by clicking and dragging
an entry up and down in the list. A view can be removed with the red delete
button.

Adding Traces

After a simulation has been completed the resulting curves can be saved as a
trace. Traces allow to compare the results of different simulation runs.

A new trace is added by either pressing the Hold current trace button in the
toolbar or by pressing the green plus button next to the Current Trace entry
in the Traces window. To remove a trace press the red minus button next to
the trace in the Traces window. Held traces can be reordered by clicking and
dragging an entry up and down in the list.

Traces can also be added and removed by simulation scripts. For details, see
section “Holding and Clearing Traces in Scopes” (on page 235).

Saving and Loading Trace Data

Existing traces in a scope can be saved by selecting Save trace data... from
the File menu. The saved traces can be loaded into a scope for later reference.
The scope into which the trace data is loaded must have the same number of

96

Using the PLECS Scope

plots as the scope from which the data was saved. The number of input sig-
nals per plot should also match, otherwise the trace data is lost when a new
simulation is started.

Scope Parameters

The scope parameters dialog allows for the appearance of the scope to be
changed and automatic or custom zoom settings to be applied to the x and y
axes. More information can be found in the parameter description of the Scope
block (see page 573). The plot background color can be changed in the PLECS
preferences (see section “Configuring PLECS” on page 41).

Printing and Exporting

A plot can be printed or exported from the File menu. When printing, the ap-
pearance of the plot and legend can be changed using the Page Setup option.
When exporting, the plot style can also be changed and the output size of the
image can be customized.

The data table can be exported to e.g. Microsoft Excel using the clipboard. To
copy the data to the clipboard open the context menu by right-clicking and
choose "Copy to clipboard".

97

3 Using PLECS

Using the Fourier Analysis

The Fourier Analysis is available from the View menu in the PLECS scope
window.

The Fourier analysis window shows the magnitude of the Fourier coefficients
for the given number of harmonics. The analysis range for the Fourier analy-
sis is determined by the cursors in the scope window. By default it is assumed
that the cursor range covers exactly one period of the base frequency, though
this can be changed in the Fourier parameters. Note that spectral leakage ef-
fects will be visible if the cursor time range is not an exact integer multiple of
the inverse base frequency.

Calculation Parameters

Base Freqency
The analysis range T is always bound to the cursor range in the PLECS
scope. In general it consists of n periods of the base frequency, i.e. T = n

f0
.

A click on the frequency input field f: in the window title bar opens the
Base Frequency dialog. Two modes are available to set the base frequency:
by freely positioning the cursors in the PLECS scope or by entering the
numerical values directly in the Base Frequency dialog.

The first mode is activated by selecting Calculate from cursor range
in the Base Frequency dialog. In this mode it is assumed that the cursor
range covers a single base period. The two cursors can be positioned inde-
pendently from each other and should be set as exactly as possible to the
start and end of a single base period. The corresponding base frequency is
displayed in the window toolbar.

If the base frequency is known beforehand it can be entered directly by
choosing Set base frequency. In this mode the scope cursors are locked
to the number of base periods. Moving the cursors still allows you to select
the analysis range without changing the base frequency.

Number of Fourier Coefficients
The number of Fourier Coefficients which are calculated can be changed in
the input field N: in the window title bar.

98

Using the Fourier Analysis

Display Parameters

Display frequency axis
The frequency axis is either shown underneath each plot or underneath
the last plot only.

Frequency axis label
The text is shown below the frequency axis.

Scaling
The Fourier analysis window offers three options to scale the Fourier coef-
ficients: Absolute, linear displays the absolute value of each coefficient.
Absolute, logarithmic displays the common logarithm of the absolute
values, multiplied by 20. Relative, linear scales all coefficients such that
the coefficient of the base frequency is 1. When set to Relative, logarith-
mic (dB) the coefficients are displayed on a logarithmic scale in Decibels
relative to the coefficient of the base frequency.

Table data
The table below the Fourier plots shows the calculated Fourier coefficients.
The values can be displayed without phase (Magnitude only), with phase
values in radians (Magnitude, phase (rad)) or with phase values in de-
gree (Magnitude, phase (degree)).

The following items can be set for each plot independently:

Title
The name which is displayed above the plot.

Axis label
The axis label is displayed on the left of the y-axis.

Y-limits
The initial lower and upper bound of the y-axis. If set to auto, the y-axis
is automatically scaled such that all data is visible.

Signal Type

As in the scope window the signal type in the Fourier analysis window can be
changed by clicking the small icon next to the signal name in the data view
window. Available types are bars, stems and continuous. By default the sig-
nals are displayed as bars. Changing the signal type for one signal will affect
all signals in the same plot.

99

3 Using PLECS

Zoom, Export and Print

The Fourier analysis window offers the same zoom, export and print opera-
tions as the PLECS scope. See section “Using the PLECS Scope” (on page 91)
for details.

Calculation of the Fourier coefficients

The following approximation is made to calculate the Fourier coefficients of a
signal with variable sampling intervals ∆Tm:

F(n) =
2

T

ˆ

T

f(t)e−jω0ntdt ≈ 2

T

∑
m

ˆ

∆Tm

fm(t)e−jω0ntdt

where

fm(t) = amt+ bm for continuous signals

fm(t) = bm for discrete signals

A piecewise linear approximation is used for continuous signals. Compared to
a fast Fourier transformation (FFT) the above approach also works for signals
which are sampled with a variable sample rate. The accuracy of this approxi-
mation highly depends on the simulation step size, ∆Tm: A smaller simulation
step size yields more accurate results.

100

Using the XY Plot

Using the XY Plot

The XY plot is used to display the relationship between two signals, x and y.
In every simulation step the x and y input signals are taken as coordinates for
a new point in the XY plot. You can choose to draw trajectories by connecting
consecutive points with a direct line, to draw a vector from the origin to the
current point or a combination of both.

Time Range Window

The time range window allows you to restrict the data that is used for plot-
ting. The window is accessible from the View menu.

The time range can be modified by moving its left and right boundary. The
inactive time range is grayed out. By clicking into the time range, the active
time range can be shifted without changing its length. Any change of the time

101

3 Using PLECS

range is reflected in the XY plot immediately. If vectors are drawn, the right
end of the time range determines the position of the vector head.

If a time range is specified in the XY plot parameters it is used as the default
width of the time range in the time range window. A detailed parameter de-
scription is available in the XY Plot documentation (see page 722).

Zoom, Save View, Export and Print

The XY plot offers the same zoom, export and print operations as the PLECS
scope. See section “Using the PLECS Scope” (on page 91) for details.

102

Simulation Parameters

Simulation Parameters

PLECS Blockset Parameters

This section describes the simulation parameters available in PLECS Blockset
for Simulink. For the PLECS Standalone simulation parameters please refer
to the next section (see page 107).

To open the parameter dialog, select PLECS parameters from the Simula-
tion menu of the schematic editor.

Circuit Model Options

Diode Turn-On Threshold This parameter globally controls the turn-on be-
havior of line commutated devices such as diodes, thyristors, GTOs and simi-
lar semiconductors. A diode starts conducting as soon as the voltage across it
becomes larger than the sum of the forward voltage and the threshold voltage.
Similar conditions apply to the other line commutated devices. The default
value for this parameter is 1e-3.

For most applications the threshold could also be set to zero. However, in cer-
tain cases it is necessary to set this parameter to a small positive value to
prevent line commutated devices from bouncing. Bouncing occurs if a switch
receives an opening command and a closing command repeatedly in subse-
quent simulation steps or even within the same simulation step. Such a sit-
uation can arise in large, stiff systems that contain many interconnected
switches.

Note The Diode Turn-On Threshold is not equivalent to the voltage drop
across a device when it is conducting. The turn-on threshold only delays the
instant when a device turns on. The voltage drop across a device is solely de-
termined by the forward voltage and/or on-resistance specified in the device pa-
rameters.

Type This parameter lets you choose between the continuous and discrete
state-space method for setting up the physical model equations. For details
please refer to section “Physical Model Equations” (on page 28).

When you choose Continuous state-space, PLECS employs the Simulink
solver to solve the differential equations and integrate the state variables. The

103

3 Using PLECS

Switch Manager communicates with the solver in order to ensure that switch-
ing occurs at the correct time. This is done with Simulink’s zero-crossing de-
tection capability. For this reason the continuous method can only be used
with a variable-step solver.

In general, the default solver of Simulink, ode45, is recommended. However,
your choice of circuit parameters may lead to stiff differential equations, e.g.
if you have large resistors connected in series with inductors. In this case you
should choose one of Simulink’s stiff solvers.

When you choose Discrete state-space, PLECS discretizes the linear state-
space equations of the physical model as described in section “State-Space
Discretization” (on page 33). All other continuous state variables are updated
using the Forward Euler method. This method can be used with both variable-
step and fixed-step solvers.

Discrete State-Space Options

Sample time This parameter determines the rate with which Simulink
samples the circuit. A setting of auto or -1 means that the sample time is in-
herited from the Simulink model.

Refine factor This parameter controls the internal step size which PLECS
uses to discretize the state-space equations. The discretization time step ∆t
is thus calculated as the sample time divided by the refine factor. The refine
factor must be a positive integer. The default is 1.

Choosing a refine factor larger than 1 allows you to use a sample time that
is convenient for your discrete controller while at the same time taking into
account the usually faster dynamics of the electrical system.

Disc. method This parameter determines the algorithm used to discretize
the state-space equations of the electro-magnetic model.

ZC step size This parameter is used by the Switch Manager when a non-
sampled event (usually the zero crossing of a current or voltage) is detected. It
controls the relative size of a step taken across the event. The default is 1e-9.

Tolerances The error tolerances are used to check whether the state vari-
ables are consistent after a switching event. The defaults are 1e-3 for the rel-
ative tolerance and 1e-6 for the absolute tolerance.

104

Simulation Parameters

Note The discrete method cannot be used with circuits that contain direct
non-linear feedbacks because in conjunction with Tustin’s method this would
lead to algebraic loops.

This applies for instance to the non-saturable induction machine models. If
you must simulate an induction machine with the discrete method, use the
Saturable Induction Machine (see page 454) instead. The non-linear feedback
paths in this model contain Integrator blocks (see page 464) which prevent the
algebraic loops.

Diagnostics

Zero crossing detection disabled In order to accurately determine the
proper switching times of power semiconductors, PLECS highly depends on
the solver’s capability to locate zero crossings. If you switch off the zero cross-
ing detection in the Simulink solver or use the less accurate “Adaptive” detec-
tion algorithm, PLECS will therefore issue a diagnostic message. This option
allows you to specify the severity level (warning or error) of this message.

If you encounter problems due to many consecutive zero crossings, it is usu-
ally not advisable to modify the zero crossing detection settings. Consecutive
zero crossings are often caused by insufficient simulation accuracy, typically
in conjunction with a stiff model. In this case it may help to tighten the rela-
tive tolerance of the Simulink solver (from the default 1e-3 to 1e-5 or 1e-6)
and to switch from the default solver ode45 to a stiff solver such as ode23tb
and, where applicable, set the Simulink solver option Solver reset method to
Robust.

Number of consecutive gate signal changes If you configure a Signal In-
port block (see page 580) in a top-level schematic to be a gate signal, PLECS
expects this signal to change only at discrete instants. If instead the signal
changes in more than the specified number of consecutive simulation time
steps, PLECS will issue an error message to indicate that there may be a
problem in the gate signal generator. You can disable this diagnostic by en-
tering 0.

Division by zero This option determines the diagnostic action to take if
PLECS encounters a division by zero in a Product block (see page 530) or a
Function block (see page 398). A division by zero yields ±∞ or nan („not a

105

3 Using PLECS

number”, if you divide 0/0). Using these values as inputs for other blocks may
lead to unexpected model behavior. Possible choices are ignore, warning and
error. In new models, the default is error. In models created with PLECS 3.6
or earlier, the default is warning.

Algebraic loop with state machines This option determines the diagnos-
tic action to take if PLECS detects an algebraic loop that includes a State Ma-
chine (see page 600). This may lead to unexpected behavior because the State
Machine will be executed multiple times for the same simulation step dur-
ing the iterative solution of the algebraic loop. Possible choices are ignore,
warning and error. The default is error.
Negative switch loss This option determines the diagnostic action to take
if PLECS encounters negative loss values during the calculation of switch
losses (see “Loss Calculation” on page 119). PLECS can issue an error or a
warning message or can continue silently. In the latter two cases, the losses
that are injected into the thermal model are cropped to zero.
Assertion action Use this option to override the action that is executed
when an assertion fails (see Assertion block on page 323). The default is use
local settings, which uses the actions specified in each individual assertion.
Assertions with the individual setting ignore are always ignored, even if this
option is different from use local settings. Note that during analyses and
simulation scripts, assertions may be partly disabled (see “Assertions” on page
85).

Sample times

Synchronize fixed-step sample times This option specifies whether
PLECS should attempt to find a common base sample rate for blocks that
specify a discrete sample time.
Use single base sample rate This option specifies whether PLECS should
attempt to find a single common base sample rate for all blocks that specify a
discrete sample time.
These options can only be modified for a Continuous State-Space model; for a
Discrete State-Space model they are checked by default. For details see sec-
tion “Multirate Systems” (on page 38).

Algebraic loops

Method Use this option to select the strategy adopted by the nonlinear
equation solver. Currently, either a line search method or a trust region

106

Simulation Parameters

method can be used.
Tolerance The relative error bound. The solver updates the block outputs
iteratively until the maximum relative change from one iteration to the next
and the maximum relative residual of the loop equations are both smaller
than this value.

State-space calculation

Use extended precision When this option is checked, PLECS uses higher-
precision arithmetics for the internal calculation of the state-space matrices
for a physical model. Check this option if PLECS reports that the system ma-
trix is close to singular.
Enable state-space splitting When this option is checked, PLECS will at-
tempt to split the state-space model for a physical domain into smaller inde-
pendent models that can be calculated and updated individually. This can re-
duce the calculation effort at runtime, which is particularly advantageous for
real-time simulations.
Display state-space splitting When this option is checked, PLECS will is-
sue diagnostic messages that highlight the components that make up the indi-
vidual state-space models after splitting. This is useful e.g. in order to connect
Model Settings blocks in the appropriate places (see Electrical Model Settings
on page 389, Rotational Model Settings on page 552 and Translational Model
Settings on page 672).

Simulink Coder

Target This option specifies the code generation target that is used when
you generate code with the Simulink Coder. For details on the available tar-
gets see section “Code Generation Targets” (on page 270).
Inline circuit parameters for RSim target This option controls whether
PLECS inlines parameter values or whether it should keep them tunable
when it creates code for the RSim target. For details see section “Tunable Cir-
cuit Parameters in Rapid Simulations” (on page 272).

PLECS Standalone Parameters

This section describes the simulation parameters available for PLECS Stan-
dalone. For the PLECS Blockset simulation parameters please refer to the
previous section.

107

3 Using PLECS

To open the parameter dialog, select Simulation parameters from the Simu-
lation menu of the schematic editor or press Ctrl-E.

Simulation Time

Start Time The start time specifies the initial value of the simulation time
variable t at the beginning of a simulation, in seconds. The initial conditions
specified in the block parameters must match the specified start time.

Stop Time The simulation ends when the simulation time has advanced to
the specified stop time.

Solver

These two parameters let you choose between variable-step and fixed-step
solvers. A fixed-step solver uses the same step size – i.e. the simulation time
increment – throughout a simulation. The step size must be chosen by the
user so as to achieve a good balance between accuracy and computational ef-
fort.

A variable-step solver can adopt the step size during the simulation depending
on model dynamics. At times of rapid state changes the step size is reduced
to maintain accuracy; when the model states change only slowly, the step size
is increased to save unnecessary computations. The step size can also be ad-
justed in order to accurately simulate discontinuities. For these reasons, a
variable-step solver should generally be preferred.

DOPRI is a variable-step solver using a fifth-order accurate explicit Runge-
Kutta formula (the Dormand-Prince pair). This solver is most efficient for
non-stiff systems and is selected by default. A stiff system can be sloppily de-
fined as one having time constants that differ by several orders of magnitudes.
Such a system forces a non-stiff solver to choose excessively small time steps.
If DOPRI detects stiffness in a system, it will abort the simulation with the
recommendation to switch to a stiff solver.

RADAU is a variable-step solver for stiff systems using a fifth-order accurate
fully-implicit three-stage Runge-Kutta formula (Radau IIa). For non-stiff sys-
tems DOPRI is more efficient than RADAU.

The fixed-step solver Discrete does not actually solve any differential equa-
tions but just advances the simulation time with fixed increments. If this
solver is chosen, the linear state-space equations of the physical model are dis-
cretized as described in section “State-Space Discretization” (on page 33). All

108

Simulation Parameters

other continuous state variables are updated using the Forward Euler method.
Events and discontinuities that occur between simulation steps are accounted
for by a linear interpolation method.

Variable-Step Solver Options

Max Step Size The maximum step size specifies the largest time step that
the solver can take and should not be chosen unnecessarily small. If you sus-
pect that the solver is missing events, try reducing the maximum step size.
However, if you just require more output points for smoother curves, you
should increase the refine factor (see below).

Initial Step Size This parameter can be used to suggest a step size to be
used for the first integration step. The default setting auto causes the solver
to choose the step size according to the initial state derivatives. You should
only change this parameter if you suspect that the solver is missing an event
at the beginning of a simulation.

Tolerances The relative and absolute specify the acceptable local integration
errors for the individual state variables according to

erri ≤ rtol · |xi|+ atoli

If all error estimates are smaller than the limit, the solver will increase the
step size for the following step. If any error estimate is larger than the limit,
the solver will discard the current step and repeat it with a smaller step size.

The default absolute tolerance setting auto causes the solver to update the
absolute tolerance for each state variable individually, based on the maximum
absolute value encountered so far.

Refine factor The refine factor is an efficient method for generating addi-
tional output points in order to achieve smoother results. For each successful
integration step, the solver calculates r − 1 intermediate steps by interpolating
the continuous states based on a higher-order polynomial. This is computa-
tionally much cheaper than reducing the maximum step size (see above).

Fixed-Step Solver Options

Fixed step size This parameter specifies the fixed time increments for the
solver and also the sample time used for the state-space discretization of the
physical model.

109

3 Using PLECS

Circuit Model Options

Diode Turn-On Threshold This parameter globally controls the turn-on be-
havior of line commutated devices such as diodes, thyristors, GTOs and simi-
lar semiconductors. A diode starts conducting as soon as the voltage across it
becomes larger than the sum of the forward voltage and the threshold voltage.
Similar conditions apply to the other line commutated devices. The default
value for this parameter is 0.

For most applications the threshold could also be set to zero. However, in cer-
tain cases it is necessary to set this parameter to a small positive value to
prevent line commutated devices from bouncing. Bouncing occurs if a switch
receives an opening command and a closing command repeatedly in subse-
quent simulation steps or even within the same simulation step. Such a sit-
uation can arise in large, stiff systems that contain many interconnected
switches.

Note The Diode Turn-On Threshold is not equivalent to the voltage drop
across a device when it is conducting. The turn-on threshold only delays the
instant when a device turns on. The voltage drop across a device is solely de-
termined by the forward voltage and/or on-resistance specified in the device pa-
rameters.

Disc. method This parameter determines the algorithm used to discretize
the state-space equations of the electro-magnetic model.

ZC step size This parameter is used by the Switch Manager when a non-
sampled event (usually the zero crossing of a current or voltage) is detected. It
controls the relative size of a step taken across the event. The default is 1e-9.

Tolerances The error tolerances are used to check whether the state vari-
ables are consistent after a switching event. The defaults are 1e-3 for the rel-
ative tolerance and 1e-6 for the absolute tolerance.

Sample times

Synchronize fixed-step sample times This option specifies whether
PLECS should attempt to find a common base sample rate for blocks that
specify a discrete sample time.

110

Simulation Parameters

Use single base sample rate This option specifies whether PLECS should
attempt to find a single common base sample rate for all blocks that specify a
discrete sample time.

These options can only be modified for a variable-step solver; for a fixed-step
solver they are checked by default. For details see section “Multirate Systems”
(on page 38).

State-space calculation

Use extended precision When this option is checked, PLECS uses higher-
precision arithmetics for the internal calculation of the state-space matrices
for a physical model. Check this option if PLECS reports that the system ma-
trix is close to singular.

Enable state-space splitting When this option is checked, PLECS will at-
tempt to split the state-space model for a physical domain into smaller inde-
pendent models that can be calculated and updated individually. This can re-
duce the calculation effort at runtime, which is particularly advantageous for
real-time simulations.

Display state-space splitting When this option is checked, PLECS will is-
sue diagnostic messages that highlight the components that make up the indi-
vidual state-space models after splitting. This is useful e.g. in order to connect
Model Settings blocks in the appropriate places (see Electrical Model Settings
on page 389, Rotational Model Settings on page 552 and Translational Model
Settings on page 672).

Assertions

Assertion action Use this option to override the action that is executed
when an assertion fails (see Assertion block on page 323). The default is use
local settings, which uses the actions specified in each individual assertion.
Assertions with the individual setting ignore are always ignored, even if this
option is different from use local settings. Note that during analyses and
simulation scripts, assertions may be partly disabled (see “Assertions” on page
85).

111

3 Using PLECS

Algebraic loops

Method Use this option to select the strategy adopted by the nonlinear
equation solver. Currently, either a line search method or a trust region
method can be used.

Tolerance The relative error bound. The solver updates the block outputs
iteratively until the maximum relative change from one iteration to the next
and the maximum relative residual of the loop equations are both smaller
than this value.

Diagnostics

Division by zero This option determines the diagnostic action to take if
PLECS encounters a division by zero in a Product block (see page 530) or a
Function block (see page 398). A division by zero yields ±∞ or nan („not a
number”, if you divide 0/0). Using these values as inputs for other blocks may
lead to unexpected model behavior. Possible choices are ignore, warning and
error. In new models, the default is error. In models created with PLECS 3.6
or earlier, the default is warning.

Negative switch loss This option determines the diagnostic action to take
if PLECS encounters negative loss values during the calculation of switch
losses (see “Loss Calculation” on page 119). PLECS can issue an error or a
warning message or can continue silently. In the latter two cases, the losses
that are injected into the thermal model are cropped to zero.

Stiffness detection This parameter only applies to the non-stiff, variable-
step DOPRI solver. The DOPRI solver contains an algorithm to detect when a
model becomes „stiff” during the simulation. Stiff models cannot be solved ef-
ficiently with non-stiff solvers, because they constantly need to adjust the step
size at relatively small values to keep the solution from becoming numerically
unstable.

If the DOPRI solver detects stiffness in model, it will raise a warning or error
message depending on this parameter setting with the recommendation to use
the stiff RADAU solver instead.

Max. number of consecutive zero-crossings This parameter only ap-
plies to variable-step solvers. For a model that contains discontinuities (also
termed „zero-crossings”), a variable-step solver will reduce the step size so as
to make a simulation step precisely at the time when a discontinuity occurs
(see “Event Detection Loop” on page 32). If many discontinuities occur in sub-
sequent steps, the simulation may come to an apparent halt without actually

112

Simulation Parameters

stopping because the solver is forced to reduce the step size to an excessively
small value.

This parameter specifies an upper limit for the number of discontinuities in
consecutive simulation steps before PLECS stops the simulation with an error
message that shows the responsible component(s). To disable this diagnostic,
set this parameter to 0.

Algebraic loop with state machines This option determines the diagnos-
tic action to take if PLECS detects an algebraic loop that includes a State Ma-
chine (see page 600). This may lead to unexpected behavior because the State
Machine will be executed multiple times for the same simulation step dur-
ing the iterative solution of the algebraic loop. Possible choices are ignore,
warning and error. The default is error.

System State

This parameter controls how the system state is initialized at the beginning of
a simulation. The system state comprises

• the values of all physical storage elements (e.g. inductors, capacitors, ther-
mal capacitances),

• the conduction states of all electrical switching elements (e.g. ideal
switches, diodes), and

• the values of all continuous and discrete state variables in the control block
diagram (e.g. integrators, transfer functions, delays).

Block parameters When this option is selected, the state variables are ini-
tialized with the values specified in the individual block parameters.

Stored system state When this option is selected, the state variables are
initialized globally from a previously stored system state; the initial values
specified in the individual block parameters are ignored. This option is dis-
abled if no state has been stored.

Store system state... Pressing this button after a transient simulation
run or an analysis will store the final system state along with a time stamp
and an optional comment. When you save the model, this information will be
stored in the model file so that it can be used in future sessions.

Note Adding or removing blocks that have continuous or discrete state vari-
ables associated with them will invalidate a stored system state.

113

3 Using PLECS

Model Initialization Commands

The model initialization commands are executed when a simulation is started
in order to populate the base workspace. You can use variables defined in the
base workspace when specifying component parameters (see “Specifying Com-
ponent Parameters” on page 50).

Note The maximum length of variable names is 63 characters. This is due to
the way, in which a workspace is stored in PLECS and exchanged with Octave.

114

4

Thermal Modeling

Thermal management is an important aspect of power electronic systems and
is becoming more critical with increasing demands for compact packaging and
higher power density. PLECS enables you to include the thermal design with
the electrical design at an early stage in order to provide a cooling solution
suitable for each particular application.

Heat Sink Concept

The core component of the thermal library is an idealized heat sink (see page
406) depicted as a semitransparent box in the figure below. A heat sink ab-
sorbs the thermal losses dissipated by the components within its boundaries.
At the same time, a heat sink defines an isotherm environment and propa-
gates its temperature to the components which it encloses.

Diode Module IGBT Module

Brake
Resistor

Brake
Chopper

Tm m

Rth T: 60

Heat conduction from one heat sink to another or to an ambient temperature
is modeled with lumped thermal resistances and capacitances that are con-

4 Thermal Modeling

nected to the heat sinks. This approach allows you to control the level of de-
tail of the thermal model.

Implementation

Each heat sink has an intrinsic thermal capacitance versus the thermal refer-
ence node. All thermal losses absorbed by the heat sink flow into this capaci-
tance and therefore raise the heat sink temperature. Heat exchange with the
environment occurs via the external connectors.

HeatSink

Heatsink

temperature

K

Thermal

losses

You may set the intrinsic capacitance to zero, but then you must connect the
heat sink either to an external thermal capacitance or to a fixed temperature,
i.e. the Constant Temperature block (see page 349) or the Controlled Tempera-
ture block (see page 351).

Thermal Loss Dissipation

There are two classes of intrinsic components that dissipate thermal losses:
semiconductor switches and ohmic resistors.

Semiconductor Losses

Power semiconductors dissipate losses due to their non-ideal nature. These
losses can be classified as conduction losses and switching losses. For com-
pleteness the blocking losses due to leakage currents need to be mentioned,
but they can usually be neglected.
Semiconductor losses are specified by referencing a thermal data sheet in the
component parameter Thermal description. See section “Thermal Descrip-
tion Parameter” (on page 123) and “Thermal Library” (on page 126) for more
details.

116

Thermal Loss Dissipation

Conduction Losses

The conduction losses can be computed in a straightforward manner as the
product of the device current and the device voltage. By default the on-state
voltage is calculated from the electrical device parameters as v = Vf +Ron · i.

However, PLECS also allows you to specify the on-state voltage used for the
loss calculation as an arbitrary function of the device current and the device
temperature: v = von(i, T). You may also specify additional custom function
arguments. This function is defined in the Conduction loss tab of the ther-
mal description as a 2D look-up table or a functional expression (see “Thermal
Editor” on page 128).

100.8 2 4

2.25

4.8 120 2.8

3

von [V]

0

0.75

14

82.6º
24.7º

Legend:

118.8º

20

1.5

ion [A]
86 16 18

A setting of 0 V for a single temperature and current value means no conduc-
tion losses. If you do not specify a thermal description in the device parame-
ters, the default will be used, i.e. the losses are calculated from the electrical
device parameters.

Note If you specify the Thermal description parameter, the dissipated ther-
mal power does not correspond to the electrical power that is consumed by the
device. This must be taken into account when you use the thermal losses for
estimating the efficiency of a circuit.

117

4 Thermal Modeling

Switching Losses

Switching losses occur because the transitions from on-state to off-state and
vice versa do not occur instantaneously. During the transition interval both
the current through and the voltage across the device are substantially larger
than zero which leads to large instantaneous power losses. This is illustrated
in the figure below. The curves show the simplified current and voltage wave-
forms and the dissipated power during one switching cycle of an IGBT in an
inverter leg.

i
C
(t)

v
CE

(t)

i
C
(t)

v
CE

(t)

t

E
on

E
offp(t)

t

In other simulation programs the computation of switching losses is usually
challenging because it requires very detailed and accurate semiconductor mod-
els. Furthermore, very small simulation time-steps are needed since the du-
ration of an individual switching transition is in the order of a few hundred
nanoseconds.

In PLECS this problem is bypassed by using the fact that for a given circuit
the current and voltage waveforms during the transition and therefore the to-
tal loss energy are principally a function of the pre- and post-switching condi-
tions and the device temperature: E = Eon(vblock, ion, T), E = Eoff(vblock, ion, T).
You may also specify additional custom function arguments. These functions
are defined in the tabs Turn-on loss and Turn-off loss of the thermal editor
as 3D look-up tables or functional expressions (see “Thermal Editor” on page
128) .

A setting of 0 J for a single voltage, current and temperature value means no
switching losses.

118

Thermal Loss Dissipation

0.4

0.8

15

125º

Legend:
25º

E [mJ]

vblock [V] 105 8

0.2

 500

0 ion [A]

0.6

0

 600

Note Due to the instantaneous nature of the switching transitions, the dissi-
pated thermal energy cannot be consumed electrically by the device. This must
be taken into account when you use the thermal losses for estimating the effi-
ciency of a circuit.

Loss Calculation

As described above, the conduction and switching losses are defined by means
of look-up tables. From these tables the actual losses are calculated during a
simulation using linear interpolation if the input values (on-state current, pre-
and post-switching current or voltage, junction temperature) lie within the
specified index range. If an input value lies out of range, PLECS will extrapo-
late using the first or last pair of index values.

If the calculated loss value is negative, PLECS will issue a diagnostic message
and/or crop the value to zero. You can select the diagnostic action to be taken
with the diagnostic parameter Negative switch loss in the simulation pa-
rameters dialog (see “PLECS Blockset Parameters” on page 103 and “PLECS
Standalone Parameters” on page 107).

119

4 Thermal Modeling

Supported devices

Semiconductor components that implement this loss model are

• the Diode (see page 361),
• the Thyristor (see page 639),
• the GTO (see page 401),
• the GTO with Diode (see page 403),
• the IGBT (see page 414),
• the IGBT with Diode (see page 434),
• the Reverse Blocking IGCT (see page 440),
• the Reverse Conducting IGCT (see page 442),
• the MOSFET (see page 493),
• the MOSFET with Diode (see page 496) and
• the TRIAC (see page 687).

In addition, the Set/Reset Switch (see page 575) is also included in this group
to enable you to build your own semiconductor models.

Ohmic Losses

Ohmic losses are calculated as i2 · R resp. u2/R. They are dissipated by the
following components:

• the Resistor (see page 542),
• the Variable Resistor with Variable Series Inductor (see page 709),
• the Variable Resistor with Constant Series Inductor (see page 706),
• the Variable Resistor with Variable Parallel Capacitor (see page 707) and
• the Variable Resistor with Constant Parallel Capacitor (see page 705).

Heat Sinks and Subsystems

By default, if you place a subsystem on a heat sink, the heat sink temperature
is propagated recursively into all subschematics of the subsystem. All thermal
losses dissipated in all subschematics flow into the heat sink. In some cases
this is not desirable.

The implicit propagation mechanism is disabled if a subschematic contains
one or more heat sinks or the Ambient Temperature block (see page 316). This

120

Temperature Initialization

latter block provides a thermal connection to the heat sink enclosing the par-
ent subsystem block.

Cathode

Anode

Vf: Vf

R: Ron

L: Lrr R: RL V K * v_Lf(u)

f(u): K*u

R: Roff

AiD

VvAC

Ambient

f(u)

vAC*iD

As an example the figure above shows the subschematic of the Diode with Re-
verse Recovery (see page 363). By default, this diode model would only dissi-
pate the ohmic losses from the three resistors and the conduction losses of the
internal ideal diode. However, the losses from the reverse recovery current in-
jected by the current source would be neglected because current sources (and
also voltage sources) do not dissipate thermal losses.

The Diode with Reverse Recovery therefore uses a Controlled Heat Flow block
(see page 350) to inject the electrical power loss into the thermal model via
the Ambient Temperature block. The power loss is calculated by multiplying
the device voltage and the device current.

Temperature Initialization

The state variables of a thermal model are the temperatures of thermal capac-
itances, and like other state variables they need to be initialized with a start-
ing value. For this purpose the Thermal Capacitor (see page 631) and other
components that implicitly contain thermal capacitances have a parameter
Initial temperature, that allows you to specify this starting value.

121

4 Thermal Modeling

However, you can also let PLECS calculate the initial value for you based on
other temperatures in the thermal system. To do so, simply leave the param-
eter blank or enter nan (a floating point constant standing for “Not A Num-
ber”). At the beginning of a simulation, PLECS will perform a “DC analysis”,
treating thermal capacitances with known initial values like constant temper-
ature sources and calculating the unknown initial values such that the system
would be in steady state.

As an example, consider the following thermal system consisting of a con-
stant temperature source and three thermal R/C pairs. If you leave the Ini-
tial temperature parameter of the three capacitances blank, all three will
“inherit” the starting temperature from the source. On the other hand, if you
leave only the parameters of the first two capacitances blank and specify an
initial value of 125 for the third one, PLECS will initialize the first capac-
itance with T0 = 25 + (125 − 25) · 2

2+3+5 = 45 and the second one with
T0 = 25+(125−25) · 2+3

2+3+5 = 75. Of course, as soon as the simulation starts, the
temperatures in all three capacitances will eventually drop to the temperature
of the source.

Time
0 10 20 30 40 50 60 70 80 90 100

Te
m
pe
ra
tu
re

20
40
60
80
100
120
140

122

Thermal Description Parameter

Thermal Description Parameter

Most semiconductor components in PLECS have a parameter Thermal de-
scription. The parameter can be used in two ways:

• to assign a data sheet from the thermal library to the component or
• to assign a data sheet from a reference variable that is defined either as a

thermal mask parameter or in the MATLAB workspace.

Assigning Thermal Data Sheets

Thermal data sheets can be assigned to semiconductors with the menu entry
From library.... PLECS only displays data sheets that match the device type;
e.g. in the dialog box of a thyristor only those data sheets appear that have
their Type field set to Thyristor.

Selecting a data sheet from a thermal library

If no data sheet is available the menu entry is disabled. In thermal param-
eters of masked subsystem all data sheets are accessible, regardless of their
type. See section “Thermal Library” (on page 126) for more information on
how to create new data sheets.

Using Reference Variables

To use a reference variable in the Thermal description parameter select the
menu entry By reference from the parameter menu. Afterwards the refer-
ence variable can then be entered in the text field.

123

4 Thermal Modeling

The reference variable must either be defined in a subsystem mask or in the
MATLAB workspace. If a MATLAB workspace variable is used it must specify
the name of a thermal description file or a structure that defines the thermal
loss data.

Referencing thermal data sheets

If the reference variable refers to a thermal data sheet, it must be specified
as a string beginning with file: followed by the name of the datasheet. It is
possible to use an absolute file path to a thermal description file, for example:

thLosses = 'file:C:\Thermal\Vendor\mydiode.xml'

Alternatively, the name of a data sheet from the thermal library can be speci-
fied. In this case the data sheet must be on the thermal search path. Its name
must be provided as a relative path without the .xml extension, for example:

thLosses = 'file:Vendor/mydiode'

Referencing data loss structures

The reference variable can contain a data structure that defines the thermal
losses with the fields Von, Eon, Eoff and CauerChain. The fields are de-
scribed as follows:

Von This field is a 2D lookup table for the voltage drop in form of a struct
with two index vectors i, T and an output matrix v.

Eon, Eoff These fields are 3D lookup tables of the turn-on and turn-off
losses in form of structs with three index vectors v, i, T and an output array
E.

CauerChain This field is a struct of two arrays, R and C which must have the
same length. The elements specify the respective values of the resistances and
capacitances in the thermal Cauer chain.

Any of the index vectors may be omitted if the lookup value is not dependent
on the corresponding variable. The number of dimensions of the output table
must correspond to the number of index vectors. If none of the index vectors
is specified, the output table must be a scalar. In this case the output can be
specified directly as a scalar rather than as a struct with a single scalar field.

An example for constructing a workspace variable containing loss data is
given below:

124

Thermal Description Parameter

von.i = [0 5 15 35 50];
von.T = [25 125];
von.v = [[0.8 1.3 1.7 2.3 2.7]' [0.6 1.1 1.6 2.6 3.2]'];
eon.v = [0 200 300];
eon.i = [0 13 23 32 50];
eon.T = [25 125];
eon.E = 1e-3 * ...

[0.000 0.000 0.000 0.000 0.000
0.000 0.167 0.333 0.500 1.333
0.000 0.250 0.500 0.750 1.700];

eon.E(:,:,2) = 1e-3 * ...
[0.000 0.000 0.000 0.000 0.000
0.000 0.333 0.667 1.000 2.267
0.000 0.500 1.000 1.500 3.400];

cc.C = [0.95 2.4];
cc.R = [0.118 0.172];
thLosses = struct('Von', von, 'Eon', eon, 'Eoff', 0, ...

'CauerChain', cc);

In PLECS Blockset, workspace variables can also be constructed from ther-
mal data sheets using the command line interface (see “Converting Thermal
Descriptions” (on page 237)).

125

4 Thermal Modeling

Thermal Library

PLECS uses a library of thermal data sheets for semiconductors. The data
sheets of the thermal library are created and edited with the thermal editor
(see “Thermal Editor” (on page 128)). By separating the thermal descriptions
of semiconductors from their electrical behavior it is possible to use specific
parameters from semiconductor manufactures for thermal simulations in con-
junction with the generic electrical switch models from PLECS.

Library Structure

PLECS uses directory names to hierarchically organize the data sheets in the
thermal library. The reference to a data sheet consists of its relative path and
its filename starting from the directories on the thermal search path.

The search path for thermal libraries is specified in the PLECS preferences
(see section “Configuring PLECS” (on page 41)). Each search path entry is the
root directory for a library tree. On program startup PLECS searches each
root directory in the search path recursively for .xml files and merges the
available descriptions into one logical structure. The accessible data sheets
can be updated manually by pressing the Rescan button in the PLECS pref-
erences window. If a new data sheet is created and saved below a directory
which is already on the search path the library is updated automatically.

A common way to organize data sheets within a thermal library is to use the
manufacturer name as the first directory level and the part number as the
filename of the data sheet.

Global and Local Data Sheets

In addition to the global library search paths specified in the Preferences
window PLECS searches a private directory for each model. This allows for
sharing models with other users without the need to synchronize the whole
thermal library. The private directory is located in the same directory as the
model file. Its name is the name of the model file (without the .mdl extension)
plus a suffix _plecs, e.g. plSMPS_CCM_plecs for model plSMPS_CCM.mdl.

If a library file with the same relative path is found both in the global and the
local library the file from the local library is used.

126

Thermal Library

Creating New Data Sheets

New thermal data sheets are created by selecting New... + Thermal descrip-
tion... from the File menu.

The data sheet should be saved on the thermal search path, otherwise it will
not be added to the thermal library and cannot be accessed.

Note It is also possible to import thermal descriptions from PLECS 1.x using
the command line interface (see section “Command Line Interface” (on page
237)).

Browsing the Thermal Library

PLECS allows for browsing the thermal library with the Thermal library
browser. It is invoked from the Window menu.

The tree view on the left shows all local and global data sheets of the thermal
library for the current model.

127

4 Thermal Modeling

Thermal Editor

The Thermal Editor is used for creating, viewing and editing thermal data
sheets. To open a new editor window select New... + Thermal description...
from the File menu. Existing library data sheets can be edited either in the
Thermal library browser (accessible from the Window menu) or by assign-
ing a data sheet to a semiconductor in the Thermal description parameter
and then selecting the menu entry Edit....
In order to access the data sheet in a PLECS model it must be saved in a sub-
directory on the thermal search path. See section “Thermal Library” (on page
126) for details of the structure of the thermal library.

128

Thermal Editor

The Thermal Editor window has the following input elements:

Manufacturer, Part number These text fields are for documentation pur-
poses only.

Type This selector serves as a filter for the Thermal description menu en-
try on the Thermal tab of a semiconductor parameter dialog. It must be set
according to the semiconductor type it is intended to be used with.

Turn-on loss, Turn-off loss, Conduction loss On these tabs you define the
switching and conduction losses of the device. See “Editing Switching Losses”
(on page 129) and “Editing Conduction Losses” (on page 130).

Therm. impedance On this tab you define the thermal impedance between
the junction and the case of the device. See “Editing the Thermal Equivalent
Circuit” (on page 131).

Variables On this tab you define custom parameters (such as gate resis-
tance or stray inductance) that may be used to define device losses. Here you
can also specify hard limits both for your custom parameters and for intrinsic
variables, i.e. the blocking voltage, the device current and the junction temper-
ature.

Custom tables On this tab you define custom lookup tables that may be
used to define device losses.

Comment This tab provides you with a text field that you may use for docu-
mentation purposes.

Editing Switching Losses

Switching losses are defined on the Turn-on loss and Turn-off loss tabs. The
Computation method popup specifies whether the loss function is defined as
a 3D lookup table, a functional expression or a combination of both.

If you select Lookup table, the pane below will show a 3D lookup table with
the blocking voltage, the device current and the junction temperature as input
variables. For more information regarding lookup tables see “Editing Lookup
Tables” (on page 134).

If you select Formula, the pane below will show a text field that allows you to
enter a functional expression. A formula may consist of numerical constants
including pi, arithmetic operators (+ - * / ˆ), mathematical functions (abs,
acos, asin, atan, atan2, cos, cosh, exp, log, log10, max, min, mod, pow, sgn,
sin, sinh, sqrt, tan, and tanh), brackets and the function arguments. The de-
fault function arguments are the blocking voltage v, the device current i and

129

4 Thermal Modeling

the junction temperature T. You may define additional function arguments on
the Variables tab (see “Adding Custom Variables” on page 132. You may also
reference custom lookup tables using the function lookup (see “Adding Custom
Lookup Tables” on page 133).

If you select Lookup table and formula, the pane below will show both
lookup table and formula field. With this method, an energy E is first com-
puted from the lookup table and may then be used in the formula to calcu-
late the final loss energy value. For instance, in order to quickly increase the
switching loss by 20%, you could enter 1.2*E into the formula field.

Editing Conduction Losses

Conduction losses are defined by means of the on-state voltage drop on the
Conduction loss tab. The Computation method popup specifies whether
the voltage drop is defined as a 2D lookup table, a functional expression or a
combination of both.

If you select Lookup table, the pane below will show a 2D lookup table with
the device current and the junction temperature as input variables. For more
information regarding lookup tables see “Editing Lookup Tables” (on page
134). On using the import wizard for constructing lookup table data from ven-
dor plots, see “Import data from plot images” (on page 136).

If you select, Formula, the pane below will show a text field that allows you
to enter a functional expression. The default function arguments are the de-
vice current i and the junction temperature T. You may define additional func-
tion arguments on the Variables tab (see “Adding Custom Variables” on page
132. You may also reference custom lookup tables using the function lookup
(see “Adding Custom Lookup Tables” on page 133).

If you select Lookup table and formula, the pane below will show both
lookup table and formula field. With this method, a voltage v is first computed
from the lookup table and may then be used in the formula to calculate the fi-
nal voltage drop value. For instance, in order to quickly increase the voltage
drop by 20%, you could enter 1.2*v into the formula field.

130

Thermal Editor

Editing the Thermal Equivalent Circuit

The thermal equivalent circuit of a component describes its physical structure
in terms of thermal transitions from the junction to the case. Each transition
consists of a thermal resistor and a thermal capacitor. They can be edited on
the Therm. impedance tab of the thermal editor. The thermal equivalent
circuit is specified either in Cauer or Foster form.
The structure of a Cauer network is shown in the figure below. In the thermal
editor the number of chain elements n and the values for Ri (in K/W) and Ci
(in J/K) for each chain element need to be entered.

Cauer network

The figure below illustrates the structure of a Foster network. In the thermal
editor the number of chain elements n and the values for Ri in (K/W) and τi
(in s) for each chain element need to be entered. Foster networks can be con-
verted to Cauer networks by pressing the button Convert to Cauer.

Foster network

Note Internally, PLECS always uses the Cauer network to calculate the ther-
mal transitions. Foster networks are converted to Cauer networks at simula-
tion start. Strictly speaking, this conversion is only accurate if the temperature
at the outer end of the network, i.e. the case, is held constant. For practical pur-
poses the conversion should yield accurate results if the external thermal ca-
pacitance is much bigger than the capacitances within the network.

131

4 Thermal Modeling

Adding Custom Variables

Custom variables, such as gate resistance or stray inductance, that you wish
to use in the definition of device losses may be defined on the Variables tab.

Use the Add , Remove , Up and Down buttons on the left to add or
remove custom variables or to reorder them. Note that the first three lines
in the list are reserved for the intrinsic variables and may not be removed or
reordered.

When you add a custom variable, you may specify a Prompt, which should
provide a brief description of the purpose variable, and a Variable, which
must be a unique identifier. This identifier may then be used in the formula
expressions that define the device losses.

In the Min and Max columns you may enter minimum and maximum allowed
values for both intrinsic and custom variables. During a simulation, PLECS
will monitor the actual values of the variables and raise a diagnostic mes-
sage if a variable value exceeds a specified limit. The default action is to show
an error and stop the simulation but this may be changed in the simulation
parameters dialog using the diagnostic parameter Loss variable limit ex-
ceeded (see “PLECS Blockset Parameters” on page 103 and “PLECS Stan-
dalone Parameters” on page 107).

132

Thermal Editor

Specifying custom variable values

When you select a thermal description with custom variables on the Thermal
tab of a semiconductor parameter dialog, the dialog will show additional pa-
rameter fields for the custom variables using the prompts mentioned above.
An example dialog is shown below.

Instead of static values that remain constant during a simulation you may
also specify the label of a Signal Goto block (see page 579) for a custom vari-
able. The label is a string consisting of a prefix for the scope (g: for global,
s: for schematic and m: for masked subsystem) and the tag name of the Goto
block. For example, if your model contains a Goto block with global scope and
the tag name Rg, you would enter ’g:Rg’ (including the quotation marks) in
order to reference this signal in a custom variable of a thermal description.
This can be used e.g. to simulate the effect of a gate drive that can dynami-
cally change the effective gate resistance.

Adding Custom Lookup Tables

Custom lookup tables are defined on the Custom tables tab. To add a new ta-
ble, click on New... and specify a unique name and the number of dimensions
of the new table. Use the Duplicate..., Rename... and Remove buttons to
duplicate, rename or remove an existing custom table.

133

4 Thermal Modeling

Custom tables can be used in function expressions for device losses using the
lookup function, which is called with a string specifying custom table name
and one to three numeric arguments depending on the number of dimensions
of the table.

For example, consider that you have defined a custom variable Rg for the gate
resistance and a custom table Gate Resistance Eon Scaler that describes
how the turn-on losses scale in terms of the gate resistance. You could then
use the Lookup table and formula method on the Turn-on loss tab, spec-
ify the nominal losses in the turn-on-loss lookup table and enter the following
function expression:

E*lookup('Gate Resistance Eon Scaler', Rg)

Editing Lookup Tables

When editing an intrinsic lookup table on one of the three loss tabs or a cus-
tom lookup table, you can add and remove new interpolation points for a ta-
ble dimension with the Edit menu or the context menu in the table. To enter
multiple values at once, separate them by semicolons or spaces.

To rotate and tilt a three-dimensional table view, click on an empty space with
the left mouse button and drag the mouse while keeping the mouse button
pressed.

Lookup method

When calculating function values from a lookup table, PLECS uses linear in-
terpolation if an input value lies within the index range for the corresponding
table dimension. If the input value lies outside the index range, PLECS will
extrapolate using the first or last pair of index values.

Copy, Paste and Scaling

Thermal data can be copied and pasted within the tables of the thermal edi-
tor, and to or from other programs, like e.g. Microsoft Excel. This can be done
using the context menu or by pressing Ctrl-C/Ctrl-V (or cmd-C/cmd-V on
Mac OS X). To specify the target location for the data, you have to select a
part of the table that has the same number of rows and columns as the copied

134

Thermal Editor

data. When copying from another program, only the first correctly format-
ted number in each table cell will be copied, any additional information (e.g.
units) will be discarded.

Values selected in a table can be scaled by a given factor by right-clicking and
choosing Scale selected values. . . from the context menu. To convert a value
from 0.23 J to 0.23 mJ, e.g., you can scale it with a factor of 0.001. To only
change the unit but not the actual value, i.e. to change 0.23 J to 230 mJ, use
the Energy scale drop box at the top right.

135

4 Thermal Modeling

Importing Data from Graphical Datasheets

PLECS provides an Import Wizard that facilitates the import of data from
graphs that are typically used on real datasheets. The wizard is opened by
clicking on the magic wand icon () that appears in the top right corner of
any page that allows you to enter tabular data, i.e. the loss and custom tables
and the thermal impedance.

When you open the import wizard for the first time on a particular page, you
are requested to provide a graph image. To import an image, drag a image file
to the empty wizard area or click into the area to open a file browser that lets
you choose an image file. Image files must have a bitmap file format (PNG,
GIF, BMP, JPG or XPM). To import graphs from a PDF file, take a snapshot of

136

Thermal Editor

the desired graph, then select Paste from the Edit menu of the editor window
to paste the snapshot into the wizard.

After the image has been imported, a green coordinate system is drawn on
top of it. Your first task should be to align the green axes with the coordinate
system in the image. You can move an axis or change its length by dragging
the axis itself or its end point with the mouse.

Ensure that the axes have the proper dimensions. For turn-on and turn-off
losses, the x-axis is expected to be in Amperes and the y-axis, in Joules; for
conduction losses, the x-axis is expected to be in Amperes and the y-axis, in
Volts. If the dimensions in the image are swapped, you can flip the image by
clicking on the Mirror axes button in the image configuration dialog (see be-
low).

Configuring the Graph Import

After you have aligned the green coordinate system, you need to enter the
axis limits into the configuration dialog that has opened automatically when
the image was imported. If you have closed the dialog, you can open it again
by clicking on the button in the wizard toolbar or on one of the green axis
limit labels.

In addition to the minimum and maximum settings, the x-axis has a Snap
property that is initialized automatically from the axis limits. You can over-
ride the snap value by entering a number here; entering 0 disables snapping.
To restore the automatically calculated value, click on the button.

Both x-axis and y-axis have a Scale property that lets you choose between a
linear and logarithmic scale. By default, double-logarithmic scaling is used for
thermal impedances only; for all other imports the scaling defaults to linear.

The Opacity slider lets you change the opacity of the graph image from fully
transparent (or invisible) to fully opaque. The Mirror axes button will mirror
the graph image diagonally so that the two axes are exchanged. This is useful
e.g. when importing conduction losses where the graph typically shows Volts
on the x-axis and Amperes on the y-axis.

Adding and Moving Points

Points are added by double-clicking anywhere in the coordinate system. If
snapping is enabled, the x-value is adjusted to the nearest snap value. To
move points, drag them with the left mouse button. If snapping is enabled,

137

4 Thermal Modeling

you can temporarily disable it by pressing and holding the Shift key when
you click on a point.
To add new curves (e.g. for another temperature value) use the corresponding
entry from the Edit menu or from the context menu of the table at the bot-
tom of the editor. If there is more than one curve, a double-click will add new
points to all curves: The point at the mouse location is added to the current
curve, i.e. the curve that you added or interacted with most recently. For all
other curves, points are added based on their neighboring points’ coordinates.
Also, if there is more than one curve, the movement of points is restricted
to the y-direction. The reason for this is that all curves in the look-up table
share the same x-values, so changing the x-value of a point in one curve will
affect all other curves as well. You can temporarily override this restriction by
pressing and holding the Shift key when you click on a point.

Zooming and Panning

You can zoom into the graph for more precise placement of points and axes.
Zooming is controlled via the View menu and the corresponding buttons in
the toolbar. You can also zoom in and out by holding the Ctrl key (Cmd key
on macOS) while rolling the mouse wheel. When you have zoomed into the
graph, you can pan the image using the sliders or by holding the Ctrl or Cmd
key while pressing and dragging the left mouse button. Pressing the spacebar
will zoom the graph to fit the window.

Adding and Managing Graph Images

Sometimes, the curves for one look-up table come from different graphs. To
add a new graph image to the wizard, click the button in the toolbar. To
change the visibility of a particular curve on the current graph, use the check
box in the corresponding row header in the table at the bottom. Press the

button in the toolbar to rename the current graph; graph names are used
purely for documentation purposes. To remove a graph (but not the curves),
press the button.

Fitting Thermal Impedances

When a vendor datasheet provides the thermal impedance as a heating curve
rather than Foster or Cauer network coefficients, you can use the import wiz-
ard to fit Foster coefficients to a given heating curve. First, import the graph

138

Thermal Editor

of the heating curve as described above and place a number of points on the
heating curve, then choose the desired number of Foster elements. As a gen-
eral rule, you must place at least two points per Foster element. As soon as
these requirements are met, PLECS will calculate a set of Foster coefficients
and display the result as an orange curve on top of the graph.

PLECS uses a non-deterministic optimization algorithm to minimize the er-
ror between the calculated curve and the points that you have placed. This
algorithm may not converge at all or converge at a local instead of the global
minimum. If the current fit is not satisfactory, you can calculate a new one by
pressing the Recalculate button. Once the results are acceptable, press the
Accept button to close the wizard and transfer the calculated Foster values.

139

4 Thermal Modeling

Note The fitting algorithm can handle only single pulse curves. Vendor
datasheets sometimes also show heating curves for repeated pulses with dif-
ferent duty cycles; these curves cannot be used to calculate Foster coefficients
with PLECS.

If the fitting algorithm repeatedly does not find a satisfactory solution, you may
need to increase the number of Foster elements. Typically, three to five Foster
elements should yield good results.

140

Semiconductor Loss Specification

Semiconductor Loss Specification

Care must be taken to ensure the polarity of the currents and voltages are
correct when specifying conduction and switching loss data for semiconductor
switches and diodes. If one or both polarities are in the wrong direction, the
losses will be zero or incorrect. The voltage and current polarities of a single
semiconductor switch, diode and semiconductor switch with diode are defined
in PLECS as shown in the figure below.

Voltage and current polarity of single semiconductor switch, diode and semi-
conductor switch with diode

Single Semiconductor Switch Losses

The blocking voltage experienced by a single semiconductor switch is positive;
therefore, switching losses are defined in the positive voltage/positive current
region. Conduction losses are also defined in the positive voltage/positive cur-
rent region.

Diode Losses

The voltage and current waveforms during a typical diode switching cycle are
shown in the next figure. Turn on losses occur at t = t1 and turn off losses at
t = t2. The switching energy loss in both cases is calculated by PLECS using
the negative blocking voltage and positive conducting current at the switching
instant. These values are shown in the figure as dots. Therefore, the lookup
tables for the turn-on and turn-off switching losses must be specified in the
negative voltage/positive current region.

Conduction losses occur when t1 < t < t2. During this time period, the current
and voltage are both positive. Therefore the conduction loss profile must be
specified in the positive voltage/positive current region.

141

4 Thermal Modeling

I
diode

V
diode

t
1

t
2

t

Diode voltage and current during switching

Losses of Semiconductor Switch with Diode

Semiconductor switches with an integrated diode such as the IGBT with Diode
model allow losses for both the semiconductor switch and diode to be individ-
ually specified using a single set of lookup tables. The conduction and switch-
ing loss tables for the semiconductor switch are specified for the same volt-
age/current regions as for the single semiconductor switch without diode. Due
to the polarity reversal of the diode, the diode losses are appended to the loss
tables of the semiconductor switch by extending the tables in the negative
voltage/negative current direction for the diode conduction losses, and in the
positive voltage/negative current direction for the diode switching losses. An
example turn-off loss table and conduction loss profile for a semiconductor
switch with diode are shown in the next two figures. A summary of the valid
voltage and current regions for defining conduction and switching losses for
the different types of semiconductors is given below:

Switch with Diode
Diode Switch

Switch Diode

V I V I V I V I

Conduction Loss + + + + + + - -

Switching Loss - + + + + + + -

142

Semiconductor Loss Specification

Turn-off loss lookup table for semiconductor switch with diode

Conduction loss profile for semiconductor switch with diode

143

4 Thermal Modeling

144

5

Magnetic Modeling

Inductors and transformers are key components in modern power electronic
circuits. Compared to other passive components they are rather difficult to
model for the following reasons:

• Magnetic components, especially transformers with multiple windings can
have complex geometric structures. The flux in the magnetic core may be
split into several paths with different magnetic properties. In addition to
the core flux, each winding has its own leakage flux.

• Core materials such as iron alloy and ferrite express a highly non-linear
behavior. At high flux densities, the core material saturates leading to a
greatly reduced inductor impedance. Moreover, hysteresis effects and eddy
currents cause frequency-depending losses.

In PLECS, the user can build complex magnetic components in a special mag-
netic circuit domain. Primitives such as windings, cores and air gaps are pro-
vided in the Magnetics Library. The available core models include saturation
and hysteresis. Frequency dependent losses can be modeled with magnetic
resistances. Windings form the interface between the electrical and the mag-
netic domain.

Alternatively, less complex magnetic components such as saturable inductors
and single-phase transformers can be modeled directly in the electrical do-
main.

Equivalent circuits for magnetic components

To model complex magnetic structures with equivalent circuits, three different
approaches exist: Coupled-inductors, the resistance-reluctance analogy and
the capacitance-permeance analogy.

5 Magnetic Modeling

Coupled inductors

In the coupled inductor approach, the magnetic component is modeled directly
in the electrical domain as an equivalent circuit, in which inductances repre-
sent magnetic flux paths and losses incur at resistors. Magnetic coupling be-
tween windings is realized either with mutual inductances or with ideal trans-
formers.
Using coupled inductors, magnetic components can be implemented in any cir-
cuit simulator since only electrical components are required. This approach is
most commonly used for representing standard magnetic components such as
transformers. The figure below shows an example for a two-winding trans-
former, where Lσ1 and Lσ2 represent the leakage inductances, Lm the non-
linear magnetization inductance and Rfe the iron losses. The copper resis-
tances of the windings are modeled with R1 and R2.

Lσ1

Rfe

Lσ2 R2

Lm

R1

Ideal Transformer
N1:N2

Transformer implementation with coupled inductors

However, the equivalent circuit bears little resemblance to the physical struc-
ture of the magnetic component. For example, parallel flux paths in the mag-
netic structure are modeled with series inductances in the equivalent circuit.
For non-trivial magnetic components such as multiple-winding transformers
or integrated magnetic components, the equivalent circuit can be difficult to
derive and understand. In addition, equivalent circuits based on inductors are
impossible to derive for non-planar magnetic components.

Reluctance-resistance analogy

The traditional approach to model magnetic structures with equivalent elec-
trical circuits is the reluctance-resistance analogy. The magnetomotive force
(MMF) F is regarded as analogous to voltage and the magnetic flux Φ as anal-
ogous to current. As a consequence, magnetic reluctance of the flux path R
corresponds to electrical resistance:

146

Equivalent circuits for magnetic components

R =
F
Φ

The magnetic circuit is simple to derive from the core geometry: Each section
of the flux path is represented by a reluctance and each winding becomes an
MMF source.
To link the external electrical circuit with the magnetic circuit, a magnetic
interface is required. The magnetic interface represents a winding and estab-
lishes a relationship between flux and MMF in the magnetic circuit and volt-
age v and current i at the electrical ports:

v = N
dΦ

dt

i =
F

N

where N is the number of turns. If the magnetic interface is implemented
with an integrator it can be solved by an ODE solver for ordinary differential
equations:

Φ =
1

N

ˆ
v dt

The schematic below outlines a possible implementation of the magnetic inter-
face in PLECS.

Ф

K

K: 1/N

L: N

V F

A

i

Vve+

e-

m+

m-

Electrical Magnetic

Implementation of magnetic interface

Although the reluctance-resistance duality may appear natural and is widely
accepted, it is an awkward choice for multiple reasons:
• Physically, energy is stored in the magnetic field of a volume unit. In a

magnetic circuit model with lumped elements, the reluctances should there-
fore be storage components. However, with the traditional choice of mmf
and flux as magnetic system variables, reluctances are modeled as resis-
tors, i.e. components that would usually dissipate energy. It is also confus-
ing that the magnetic interface is a storage component.

147

5 Magnetic Modeling

• To model energy dissipation in the core material, inductors must be em-
ployed in the magnetic circuit, which is even less intuitive.

• Magnetic circuits with non-linear reluctances generate differential-algebraic
equations (DAE) resp. algebraic loops that cannot be solved with the ODE
solvers offered in PLECS.

• The use of magnetic interfaces results in very stiff system equations for
closely coupled windings.

Permeance-capacitance analogy

To avoid the drawbacks of the reluctance-resistance analogy the alternative
permeance-capacitance analogy is most appropriate. Here, the MMF F is
again the across-quantity (analogous to voltage), while the rate-of-change of
magnetic flux Φ̇ is the through-quantity (analogous to current). With this
choice of system variables, magnetic permeance P corresponds to capacitance:

Φ̇ = P dF

dt

Hence it is convenient to use permeance P instead of the reciprocal reluctance
R to model flux path elements. Because permeance is modeled with storage
components, the energy relationship between the actual and equivalent mag-
netic circuit is preserved. The permeance value of a volume element is given
by:

P =
1

R
=
µ0µrA

l

where µ0 = 4π × 10−7 N/A2 is the magnetic constant, µr is the relative per-
meability of the material, A is the cross-sectional area and l the length of the
flux path.

Magnetic resistors (analogous to electrical resistors) can be used in the mag-
netic circuit to model losses. They can be connected in series or in parallel to
a permeance component, depending on the nature of the specific loss. The en-
ergy relationship is maintained as the power

Ploss = F Φ̇

converted into heat in a magnetic resistor corresponds to the power loss in the
electrical circuit.

Windings form the interface between the electrical and the magnetic domain.
A winding of N turns is described with the equations below. The left-hand

148

Magnetic Circuit Domain in PLECS

side of the equations refers to the electrical domain, the right-hand side to the
magnetic domain.

v = N Φ̇

i =
F

N

Because a winding converts through-quantities (Φ̇ resp. i) in one domain into
across-quantities (v resp. F) in the other domain, it can be implemented with
a gyrator, in which N is the gyrator resistance R. The figure below shows the
symbol for a gyrator and a possible implementation in PLECS.

A

A

R

R

Gyrator symbol and implementation

In principle, the gyrator component could be used with regular capacitors to
build magnetic circuits. However, neither the gyrator symbol nor the capaci-
tor adequately resemble a winding respectively a flux path. Moreover, any di-
rect connection between the electrical and magnetic domain made by mistake
would lead to non-causal systems that are very difficult to debug. Therefore,
dedicated magnetic components should be used when modeling magnetic cir-
cuits.

Magnetic Circuit Domain in PLECS

The magnetic domain provided in PLECS is based on the permeance-
capacitance analogy. The magnetic library comprises windings, constant and
variable permeances as well as magnetic resistors. By connecting them accord-
ing to the physical structure the user can create equivalent circuits for arbi-
trary magnetic components. The two-winding transformer from above will look
like the schematic below when modeled in the magnetic domain.

Pσ1 and Pσ2 represent the permeances of the leakage flux path, Pm the non-
linear permeance of the core, and Gfe dissipates the iron losses. The winding
resistances R1 and R2 are modeled in the electrical domain.

149

5 Magnetic Modeling

R2R1

N1 N2

GfePm

Pσ1 Pσ2

Transformer implementation in the magnetic domain

Modeling Non-Linear Magnetic Material

Non-linear magnetic material properties such as saturation and hysteresis
can be modeled using the variable permeance component. The permeance is
determined by the signal fed into the input of the component. The flux-rate
through a variable permeance P(t) is governed by the equation:

Φ̇ =
d

dt
(P · F) = P · dF

dt
+

d

dt
P · F

Since F is the state variable the equation must be solved for dF
dt . Therefore,

the control signal must provide the values of both P(t) and d
dtP(t).

The control signals must also provide the flux Φ(t) through the permeance.
This enables the solver to enforce Kirchhoff ’s current law for all branches k of
a node:

n∑
k=1

Φk = 0

When specifying the characteristic of a non-linear permeance, we need to dis-
tinguish carefully between the total permeance Ptot(F) = Φ/F and the differ-
ential permeance Pdiff(F) = dΦ/dF .

If the total permeance Ptot(F) is known the flux-rate Φ̇ through a time-
varying permeance is calculated as:

150

Magnetic Circuit Domain in PLECS

Φ̇ =
dΦ

dt

=
d

dt
(Ptot · F)

= Ptot ·
dF

dt
+

dPtot

dt
· F

= Ptot ·
dF

dt
+

dPtot

dF
· dF

dt
· F

=

(
Ptot +

dPtot

dF
· F
)
· dF

dt

In this case, the control signal for the variable permeance component is:
P(t)

d
dtP(t)

Φ(t)

 =

Ptot + d

dF Ptot · F

0

Ptot · F

In most cases, however, the differential permeance Pdiff(F) is provided to char-
acterize magnetic saturation and hysteresis. With

Φ̇ =
dΦ

dt

=
dΦ

dF
· dF

dt

= Pdiff ·
dF

dt
,

the control signal is
P(t)

d
dtP(t)

Φ(t)

 =

Pdiff

0

Ptot · F

Saturation Curves for Soft-Magnetic Material

Curve fitting techniques can be employed to model the properties of ferromag-
netic material. As an example, a saturation curve adapted from the modified
Langevian equation for bulk magnetization without interdomain coupling is
used, which is referred to as the coth function:

151

5 Magnetic Modeling

B = Bsat

(
coth

3H

a
− a

3H

)
+ µsatH

The coth function has three degrees of freedom which are set by the coef-
ficients Bsat, a and µsat. These coefficients can by found e.g. using a least-
squares fitting procedure. Calculating the derivate of B with respect to H
yields

dB

dH
= Bsat

(
tanh2 (H/a)− 1

a tanh2 (H/a)
− a

H2

)
+ µsat

With the relationships Φ = B · A and F = H · l the control signal Pdiff for the
variable permeance is easily derived from the equation above.

References
S. El-Hamamsy and E. Chang, “Magnetics modeling for computer-aided de-

sign of power electronics circuits,” in Power Electronics Specialists Confer-
ence, vol. 2, pp. 635–645, 1989.

R. W. Buntenbach, “Improved circuit models for inductors wound on dissipa-
tive magnetic cores,” in Proc. 2nd Asilomar Conf. Circuits Syst., Pacific
Grove, CA, Oct. 1968, pp. 229–236 (IEEE Publ. No. 68C64-ASIL).

R. W. Buntenbach, “Analogs between magnetic and electrical circuits,” in
Electron. Products, vol. 12, pp. 108–113, 1969.

D. Hamill, “Lumped equivalent circuits of magnetic components: the gyrator-
capacitor approach,” in IEEE Transactions on Power Electronics, vol. 8,
pp. 97–103, 1993.

D. Hamill, “Gyrator-capacitor modeling: A better way of understanding mag-
netic components,” in APEC Conference Proceedings pp. 326–332, 1994.

152

6

Mechanical Modeling

One-dimensional mechanics describe the mechanical interaction between bod-
ies that have exactly one degree of freedom. A translational body (or Mass)
can move along a single axis, and a rotational body (or Inertia) can rotate
around a single axis. With this limitation one-dimensional mechanical sys-
tems can be modeled similarly to electrical systems using simple analogies
that are listed in the following table.

Electrical and Mechanical Analogies

Electrical Translational Rotational

Voltage Speed Angular speed

Current Force Torque

Capacitor Body (mass) Body (moment of inertia)

Inductor Spring Spring

Resistor Damper Damper

Transformer Lever Gear

Switch Clutch Clutch

6 Mechanical Modeling

Flanges and Connections

The two mechanical subdomains use separate connectors: a translational
flange and a rotational flange . You can draw connections between flanges
of the same type. By creating branch connections you can connect more than
two flanges. Flanges that are connected to each other have the same displace-
ment (i.e. position or angle), and the connection will exert whatever force is
necessary in order to maintain this relationship.

Body components (i.e. the translational Mass and the rotational Inertia) have
two rigidly connected flanges so that the two systems shown below are equiva-
lent:

Equivalent connections of three translational bodies

Force/Torque Flows and Sign Conventions

As the above table of electrical and mechanical analogies suggests, forces or
torques acting on components are modeled as flows from one flange to another.
The direction of a positive flow is indicated either with a dot next to a flange
or with an arrow in the component icon.

Force and torque flows must be balanced, i.e. the sum of all flows towards
a component must generally be zero, but there are two exceptions to this
rule:

• Reference components only have a single flange so balancing is not possible
for a single instance. Reference components in fact represent connectors of
a single, global reference frame, and it is the net flow towards this reference
frame that must be zero.

• Body components have an implicit internal connection to the global refer-
ence frame. A positive net flow towards a body causes the body to accelerate
in the positive direction.

154

Positions and Angles

In this context it is important to note that the positive direction does not nec-
essarily correlate with the graphical orientation of the components. For in-
stance, the schematic shown below models the equation

F1 + F2 = m · a

i.e. both forces accelerate the body in the positive direction, even though in the
schematic the two forces might appear to oppose each other.

Mass and two forces

Positions and Angles

In contrast to other modeling environments, PLECS does not generally use
flange displacements as state variables in the component equations in order
to avoid having to solve Index-2 problems. Instead, absolute or relative dis-
placements are only calculated when required e.g. in a hard-stop component
or if you explicitly measure them using a sensor. The displacements are then
calculated by integrating the corresponding absolute or relative speed.

Initial Conditions

As with all integrators, displacement meters must be provided with proper
initial values. PLECS allows you to specify these initial values directly in the
components that require them or indirectly via neighboring components. For
this purpose, most components have an initial displacement parameter that
defaults to an empty string, which means ”don’t care” or ”don’t know”.

At simulation start, PLECS will automatically calculate required but un-
known initial values from the values that you have provided. An error will be
flagged if you do not supply enough data to determine required initial values.
On the other hand, an error will also be flagged, if you provide too much and
inconsistent data.

The example shown below models a body with mass m that is subject to a
gravitational force m · g and suspended from a spring. The spring is initially
unstretched (dx0 = 0) but its equilibrium displacement x0 is not specified.

155

6 Mechanical Modeling

Spring and mass

If the model is run as is, PLECS will flag an error because it does not have
enough data to calculate this equilibrium length and the initial value of the
position sensor. To fix this, you can specify any one of the following three pa-
rameters:

1 the initial value x0 of the position sensor

2 the initial position x0 of the body

3 the equilibrium displacement x0 of the spring

Note that you may specify more than one of the above values, but if you do so,
the settings must be consistent.

Angle Wrapping

When calculating angles by integrating angular speed, care must be taken to
avoid numerical problems during longer simulations. For this reason, PLECS
automatically wraps the integral in the interval between −π and +π when you
measure an absolute angle with a position sensor that has one flange inter-
nally connected to the rotational reference frame. Note that relative angles
– measured with a position sensor that has two accessible flanges – are not
wrapped because you can wind a torsion spring by more than one turn.

Ideal Clutches

Analogous to its ideal electrical switches, PLECS features ideal mechani-
cal clutches that engage and disengage instantaneously. While engaged they
make an ideal rigid connection between their flanges and while disengaged
they transmit zero force (or torque).

156

Ideal Clutches

Inelastic Collisions

PLECS permits you to connect an ideal clutch between two bodies and engage
the clutch while they move (or rotate) at different speeds. PLECS models such
an event as a perfectly inelastic collision and calculates the common speed af-
ter the collision based on the conservation law of angular momentum so that
e.g.

ω+ =
J1ω

−
1 + J2ω

−
2

J1 + J2

where J1 and J2 are the moments of inertia of the two bodies, ω−1 and ω−2 are
the two angular speeds prior to the collision and ω+ is the common angular
speed after the collision.

It is important to note that kinetic energy is lost during an inelastic colli-
sion even though the clutch is ideal and lossless. Assuming for simplicity that
J1 = J2 = J so that ω+ = 1

2 (ω−1 + ω−2), the kinetic energy of the system before
and after the collision is for example

E− =
1

2
J
(
ω−1

2
+ ω−2

2
)

E+ =
1

2
(2J) ω+2

=
1

4
J
(
ω−1 + ω−2

)2
⇒ E− − E+ =

1

4
J
(
ω−1 − ω

−
2

)2

This is demonstrated using the simple example shown below consisting of two
bodies with the same inertia J = 1kg·m2

rad2 . One initially rotates with ω−1 = 1 rad
s

while the other is stationary ω−2 = 0. There is no friction or external torque
acting on the bodies. When the clutch engages at t = 1s, the two bodies imme-
diately rotate with the same speed ω+ = .5 rad

s and the total kinetic energy of
the system reduces instantaneously from .5J to .25J.

It is interesting to compare this response with that of a more detailed model,
in which the clutch is modeled with a finite damping coefficient when en-
gaged. Additionally the two shafts connecting the bodies with the clutch are

157

6 Mechanical Modeling

0

0.5

1
Sp

ee
d

/ r
ad

 s
−

1

0 1 2

0

0.5

M
ec

h.
 e

ne
rg

y
/ J

t / s

Inelastic collision with ideal clutch

assumed to have a certain elasticity and damping coefficient. The correspond-
ing schematic and plots are shown below; for comparison the response from
the idealized model is superimposed with dashed lines.

The damping coefficients and spring constants have been exaggerated so that
there is visible swinging. Note however, that after the transients have settled,
the two bodies rotate at the same common speed as in the idealized model.
Likewise, the final mechanical energy stored in the system is the same as in
the idealized model.

158

Ideal Clutches

0

0.5

1
Sp

ee
d

/ r
ad

 s
−

1

0 1 2

0

0.5

M
ec

h.
 e

ne
rg

y
/ J

t / s

Inelastic collision with non-ideal clutch and elastic shafts

159

6 Mechanical Modeling

160

7

Analysis Tools

Steady-State Analysis

Many specifications of a power electronic system are often given in terms of
steady-state characteristics. A straight-forward way to obtain the steady-state
operating point of a system is to simulate over a sufficiently long time-span
until all transients have faded out. The drawback of this brute-force approach
is that it can be very time consuming. Usually a system has time constants
that are much longer than the switching period. This applies in particular to
electro-thermal models.

Algorithm

The steady-state analysis of a periodic system is based on a quasi-Newton
method with Broyden’s update. In this approach the problem is formulated
as finding the roots of the function

f(x) = x− FT (x)

where x is an initial vector of state variables and FT (x) is the final vector of
state variables one period T later.

Evaluating f(x) or FT (x) therefore involves running a simulation from tstart to
tstart + T . The period, T , must be the least common multiple of the periods of
all sources (signal or electrical) in the model.

The above problem can be solved iteratively using

xk+1 = xk − J−1
k · f(xk) , Jk =

∂f(x)

∂x

∣∣∣∣
xk

The Jacobian J is calculated numerically using finite differences. If n is the
number of state variables, calculating the Jacobian requires n + 1 simulation

7 Analysis Tools

runs where each state variable in turn is slightly perturbed and the difference
between the perturbed and unperturbed solution is computed to obtain one
column of J:

ji =
f(x + ∆xi)− f(x)

|∆xi|
, i = 1 . . . n

Because this is computationally expensive, only the first Jacobian is actually
computed this way. In subsequent iterations, the Jacobian is updated using
Broyden’s method, which does not require any additional simulations.

The convergence criterion of the iterations is based on the requirement that
both the maximum relative error in the state variables and the maximum rel-
ative change from one iteration to the next are smaller than a certain limit
rtol:∣∣∣∣xk+1 − xk

xk

∣∣∣∣ < rtol and
|fi(x)|

max |xi(τ)|
< rtol for all i = 1, . . . , n

A steady-state analysis comprises the following steps:

1 Simulate until the final switch positions after one cycle are equal to the ini-
tial switch positions. This is called a circular topology.

2 Calculate the Jacobian matrix J0 for the initial state.

3 Iterate until the convergence criterion is satisfied. If during the iterations
the final switch positions after one cycle differ from the initial switch posi-
tions, go back to step 1.

Fast Jacobian Calculation for Thermal States

To reduce the number of simulation runs and thus save computation time
PLECS can calculate the Jacobian matrix entries pertaining to thermal states
directly from the state-space matrices rather than using finite differences.

There is a certain error involved with this method since it neglects the feed-
back from the thermal states to the electrical states (or Simulink states).
While this will not affect the accuracy of the final result of the steady-state
analysis it may slow down the convergence. Normally, however, the overall
performance will be much faster than calculating the full Jacobian matrix.

The calculation method is controlled by the parameter JacobianCalculation
(see below).

162

Steady-State Analysis

Non-periodic Case

If the operating point of the system is defined as non-periodic (DC), a variant
of the algorithm described above is performed. As in the periodic case, Newton
iterations are executed to find the steady-state. Here, the algorithm searches
for the roots of the function

f(x) = ẋ

i.e. the time derivative of the vector of state variables x. Since no simulation
has to be performed to compute f , the full Jacobian J is calculated in each it-
eration. The convergence criterion remains the same as for the periodic case.

Limitations

Hidden state variables

In PLECS Blockset, the steady-state analysis depends on the fact that a
model can be completely initialized with the InitialState parameter of the
sim command. However, certain Simulink blocks that clearly have an inter-
nal memory do not store this memory in the state vector and therefore can-
not be initialized. Among these blocks are the Memory block, the Relay block,
the Transport Delay block and the Variable Transport Delay block. If a model
contains any block with hidden states, the algorithm may be unable to find a
solution.

State variable windup

If the effect of a state variable on the system is limited in some way but the
state variable itself is not limited, it might wind up towards infinity. In this
case the algorithm may fail to converge or return a false solution. In order to
avoid this problem you should limit the state variable itself, e.g. by enabling
the Limit output checkbox of an Integrator block.

Reference

D. Maksimović, "Automated steady-state analysis of switching power convert-
ers using a general-purpose simulation tool", Proc. IEEE Power Electron-
ics Specialists Conference, June 1997, pp. 1352-1358.

163

7 Analysis Tools

AC Analysis

The AC Analysis uses the Steady-State Analysis to compute the transfer func-
tion of a periodic system at discrete analysis frequencies. For each frequency
the following steps are executed:

1 Apply a sinusoidal perturbation to the system under study.

2 Find the periodic steady-state operating point of the perturbed system.

3 Extract the system response at the perturbation frequency using Fourier
analysis.

The perturbation frequencies are defined by specifying the sweep range and
the number of points to be placed within this range on a linear or logarithmic
scale.

Note The period length of the perturbed system is the least common multiple
of the unperturbed system period and the perturbation period. In order to keep
this number and thus the simulation time small the algorithm may slightly ad-
just the individual perturbation frequencies.

In PLECS Standalone, the operating point can be defined as “non-periodic”
(DC). In this case, no sweep is executed, but the Bode plot is computed di-
rectly from the state space matrices at the steady-state.

Impulse Response Analysis

An alternative and faster method to determine the open loop transfer function
of a system is the Impulse Response Analysis. Instead of perturbing a system
with sinusoidal stimuli of different frequencies, one at a time, a single impulse
is applied when the system is in steady state. The system transfer function
can then be calculated very efficiently over a wide frequency range (from zero
to half the system frequency) by computing the Laplace transform of the tran-
sient impulse response.

Algorithm

The impulse response analysis is performed in three steps:

164

Impulse Response Analysis

1 Find the steady-state operating point of the system under study.

2 Apply a perturbation in form of a discrete impulse for the duration of one
period.

3 Calculate the Laplace transform of the transient impulse response.

Compensation for Discrete Pulse

Theoretically, in order to compute the system transfer function from the
Laplace transform of the system response, the system must be perturbed with
a unit Dirac impulse (also known as delta function). This is not practical for
numerical analysis, so the algorithm applies a finite rectangular pulse instead.
For transfer functions such as the line-to-output transfer function or the out-
put impedance this can be compensated for by dividing the Laplace transform
of the system response by the Laplace transform of the rectangular pulse.
This is achieved by setting the parameter Compensation for discrete pulse
to discrete pulse, which is the default.

However, when calculating control-to-output transfer functions that involve
the duty cycle of a switched converter, the rectangular input signal interferes
with the sampling of the modulator. In this case the compensation type should
be set to external reference. This causes the Impulse Response Analysis
block to have two input signals that should be connected as shown in this fig-
ure.

m
15/28

ScopeModulator

PWM

[m_ac]

[m_ac]

Control to Output
Transfer Function

PLECS
Impulse Resp.

Analysis

Circuit

s

i_L

v_load

PLECS
Circuit

Finally, you can set the compensation type to none which means that the com-
puted transfer function is taken as is. Use this setting if the modulator uses
regular sampling and the sampling period is identical to the system period.

Reference

D. Maksimović, "Automated small-signal analysis of switching power convert-
ers using a general-purpose time-domain simulator", Proc. Applied Power

165

7 Analysis Tools

Electronics Conference, February 1998.

Multitone Analysis

The Multitone Analysis is similar to an AC Analysis. Again the response of
the system to a small perturbation signal is analysed. However, instead of
multiple sinusoidal signals of different frequencies, only one multitone signal
is applied. It is composed of several sinusoidal signals and therefore contains
all investigated frequencies at once.

The multitone signal is computed as

u(t) =

√
2

N

N∑
k=1

sin

(
2πkfbt+

π(k − 1)2

N

)
,

where N is the number of tones and fb the base frequency. In PLECS, the
user can control the amplitude of the perturbation signal by a factor that is
multiplied to u(t).

Algorithm

The simulation is divided into two phases. It is assumed that the system
reaches its steady-state in the first phase of duration Ti. In the second phase
of duration Tb = 1/fb, the response of the system is recorded for the Fourier
analysis.

The Multitone Analysis performs these steps:

1 Perform an unperturbed simulation of length Ti + Tb. Record the system
response during Tb in y0.

2 Perform a simulation of the same length and perturbed by u. Record the
system response during Tb in y.

3 Compute the Fourier transforms U of u and Y of y − y0.

4 Compute the transfer function as G = Y/U .

166

Multitone Analysis

Remarks

The Multitone Analysis is faster than the AC Analysis because it only needs
to compute the response to one signal instead of a set of signals for each fre-
quency. On the other hand, the analysed frequencies are restricted to mul-
tiples of the base frequency. Since the Multitone Analysis does not use the
Steady-State Analysis, it still works in cases where the Steady-State Analy-
sis fails, provided Ti is large enough.

Note that the lengths of the y0 and y vectors are different in general. To com-
pute the difference y − y0, the missing values are linearly interpolated.

References

S. Boyd, "Multitone signals with low crest factor", IEEE Transactions of Cir-
cuits and Systems, Vol. CAS-33, No. 10, 1986.

C. Fernández, P. Zumel, A. Fernández-Herrero, M. Sanz, A. Lázaro, A. Bar-
rado, "Frequency response of switching DC/DC converters from a single
simulation in the time domain", Applied Power Electronics Conference
and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE , March 2011.

167

7 Analysis Tools

Usage in PLECS Standalone

In PLECS Standalone all analyses are managed in the Analysis Tools Dialog
shown below. To open the dialog, select Analysis tools... from the Simula-
tion menu of the schematic editor.

The left hand side of the dialog window shows a list of the analyses that are
currently configured for the model. To add a new analysis, click the button
marked + below the list and select the desired analysis type. To remove the
currently selected analysis, click on the button marked -. You can reorder the
analyses by clicking and dragging an entry up and down in the list.

The right hand side of the dialog window shows the parameter settings of the
currently selected analysis. Each analysis must have a unique Description.
The other parameters available for the different analysis types are described
further below.

The button Start analysis/Abort analysis starts the currently selected
analysis or aborts the analysis that is currently running. The button Show
log/Hide log shows or hides a log window that displays the progress of an
analysis and diagnostic messages.

Steady-State Analysis

Operating point
This parameter defines whether the operating point of the system is peri-
odic or non-periodic (DC). If it is periodic, the system period can be speci-

168

Usage in PLECS Standalone

fied using the next parameter.

System period
The system period is the least common multiple of the periods of all
sources (signal or electrical) in the model. If the parameter setting does
not reflect the true system period or an integer multiple thereof, the anal-
ysis will yield meaningless results or fail to converge altogether. A setting
of 0 is equivalent to defining the system as non-periodic. When set to auto,
which is the default, PLECS will try to determine the system period auto-
matically.

Simulation start time
The start time tstart to be used in the transient simulation runs. Simula-
tions run from tstart to tstart + T , where T is the system period specified
above. The default is 0.

Show final cycles / timespan
The number of steady-state cycles for which a transient simulation is run
at the end of an analysis. Or, if the simulation is non-periodic, the dura-
tion of the final transient simulation. The default is 1.

Number of init. cycles
The number of cycle-by-cycle simulations to be performed before the New-
ton iterations are started. When an analysis fails to converge because the
starting point was too far from the steady-state solution, this parameter
can help to get better starting conditions. The default is 0.

Termination tolerance
The relative error bound. The analysis continues until both the maximum
relative error in the state variables and the maximum relative change
from one iteration to the next are smaller than this bound for each state
variable.

Max. number of iterations
Maximum number of Newton iterations allowed.

Rel. perturbation for Jacobian
Relative perturbation of the state variables used to calculate the approxi-
mate Jacobian matrix.

Jacobian calculation
Controls whether Jacobian matrix entries for thermal state variables are
calculated via finite differences (full) or directly from the state-space ma-
trices (fast). The default is fast.

169

7 Analysis Tools

AC Sweep

In order to perform an AC sweep, you need to insert a Small Signal Perturba-
tion (see page 589) and a Small Signal Response (see page 590) block in order
to define the points at which the perturbation is injected and the response is
measured. The Small Signal Gain (see page 588) block can be used to obtain
the closed loop gain of a feedback loop.
At the end of an analysis, a scope window will open and display the Bode dia-
gram of the transfer function. You can also open the scope manually by click-
ing one Show results button.
Operating point

This parameter defines whether the operating point of the system is peri-
odic or non-periodic (DC). If it is periodic, the system period can be speci-
fied using the next parameter.

System period
The system period is the least common multiple of the periods of all
sources (signal or electrical) in the model. If the parameter setting does
not reflect the true system period or an integer multiple thereof, the anal-
ysis will yield meaningless result or fail to converge altogether. A system
period of 0 is equivalent to defining the system as non-periodic. When set
to auto, which is the default, PLECS will try to determine the system pe-
riod automatically.

Frequency range
A vector containing the lowest and highest perturbation frequency.

Amplitude
A vector containing the amplitudes of the perturbation signal at the low-
est and highest frequency. The amplitudes at intermediate frequencies are
interpolated linearly. If a scalar is entered, the amplitude will be constant
for all frequencies.

Perturbation
The Small Signal Perturbation block that will be active during the analy-
sis. All other perturbations blocks will output 0.

Response
The Small Signal Response block that will record the system response dur-
ing the analysis.

Simulation start time
The start time tstart to be used in the transient simulation runs. Simula-
tions run from tstart to tstart + T , where T is the system period specified
above. The default is 0.

170

Usage in PLECS Standalone

Frequency scale
Specifies whether the sweep frequencies should be distributed on a linear
or logarithmic scale.

Number of points
The number of automatically distributed frequencies.

Additional frequencies
A vector specifying frequencies to be swept in addition to the automati-
cally distributed frequencies.

For a description of the steady-state options please refer to “Steady-State
Analysis” (on page 168).

Impulse Response Analysis

In order to perform an impulse response analysis, you need to insert a Small
Signal Perturbation (see page 589) and a Small Signal Response (see page
590) block in order to define the points at which the perturbation is injected
and the response is measured.
At the end of an analysis, a scope window will open and display the Bode dia-
gram of the transfer function. You can also open the scope manually by click-
ing one Show results button.
For a description of the parameters please refer to “AC Sweep” (on page 170).
In an impulse response analysis, the computational effort for an individual
frequency is very cheap. Therefore, the parameter Additional frequencies is
omitted; instead, the Number of points can be set to a large value in order
obtain smooth curves.

Multitone Analysis

In order to perform a multitone analysis, you need to insert a Small Signal
Perturbation (see page 589) and a Small Signal Response (see page 590) block
in order to define the points at which the perturbation is injected and the re-
sponse is measured.
At the end of an analysis, a scope window will open and display the Bode dia-
gram of the transfer function. You can also open the scope manually by click-
ing one Show results button.
Initial simulation period

The duration of an initial simulation performed before the response is
measured. It is assumed that during this period, the system reaches its

171

7 Analysis Tools

steady state. The total simulation duration will be the sum of this parame-
ter and one period of the base frequency signal.

Frequency range
A vector containing the lowest and highest frequency of the multitone per-
turbation signal. The highest frequency is rounded up towards the next
integer multiple of the lowest frequency.
In a multitone analysis, the frequencies are linearly spaced (see “Multi-
tone Analysis” (on page 166)). Since the Bode plot has a logarithmic scale,
PLECS thins out the higher frequency values to accelerate the analysis.
If the lowest and highest frequencies are far apart, i.e. separated by sev-
eral orders of magnitude, the multitone analysis may become slow. One
reason is that the simulation times become long and the simulation steps
small, since they depend on the lowest and highest frequencies, respec-
tively. You may try to speed up the analysis by specifying intermediate
frequency values, i.e. by entering a frequency vector with more than two
elements. Each intermediate value must be greater than ten times the
preceding value. If the frequency vector contains n elements, n − 1 sepa-
rate multitone analyses are performed and the Bode plot is composed of
the respective results. Since the frequency range of each individual multi-
tone analysis is smaller than the overall range, the total time needed may
become shorter.

Amplitude
The amplitude of the perturbation signal. Note that the actual perturba-
tion signal may have a sightly different amplitude due to its composition
from the different tones.

Perturbation
The Small Signal Perturbation block that will be active during the analy-
sis. All other perturbations blocks will output 0.

Response
The Small Signal Response block that will record the system response dur-
ing the analysis.

Extraction of State-Space Matrices

PLECS allows you to extract the state-space matrices describing the linear
portion of a circuit model for a given combination of switch positions. The
commands used for this purpose are listed below. These commands can be
used both in a Simulation Script (see page 239) and on the Octave console. In
each of the commands circuit is the name of the circuit model.

172

Usage in PLECS Standalone

names = plecs('get', circuit, 'StateSpaceOrder');

returns a struct containing the names of the components associated with the
circuit model’s inputs, outputs, states and switches.

plecs('set', circuit, 'SwitchVector', switchpos);

sets the vector of switch positions for the subsequent analysis to switchpos.

t = plecs('get', circuit, 'Topology');

returns a struct with the state-space matrices A, B, C, D and I for the vec-
tor of switch positions specified by the previous command. The matrix I is the
identity matrix if all electrical states are independent. Otherwise it specifies
the relationship between the dependent variables.

Above commands can also be invoked via the XML-RPC interface (see page
247) using an analogous syntax.

Application Example

The demo model BuckOpenLoop implements the buck converter shown below.
It operates at a switching frequency of 100 kHz with a fixed duty-cycle of
15/28. To run a transient simulation from zero initial conditions, select Start
from the Simulation menu.

C
m

Scope
PWM

sm~+
m' ~

vo'

V: 28 R: 3V

A

FET
D

L: 50e-6

C: 500e-6 I ~
i'

To view the analyses configured in this model select Analysis tools... from
the Simulation menu. The only periodic source in the model is the carrier
signal used in the modulator. Hence, the parameter System period for all
analyses is specified as T = 1/100 kHz = 10−5 s.

173

7 Analysis Tools

Steady-State Operation

To view the steady-state operation of the converter, select Steady-State Anal-
ysis from the list and click on Start analysis. After the analysis has found
the periodic operating point, the scope will show five steady-state cycles.

Control-to-Output Transfer Function

For the calculation of the control-to-output transfer function, a small pertur-
bation needs to be added to the modulation index. This is done with the Small
Signal Perturbation block m', which has the Show feed-through input set-
ting enabled. The system output in this case is defined as the output voltage
of the converter. The output signal of the voltmeter is therefore connected to
the Small Signal Response block vo'.

To calculate the transfer function using the AC Sweep, select Control to Out-
put TF (AC Sweep) from the list and click on Start analysis. The analysis
sweeps the frequency range between 100 Hz and 50 kHz. 21 points are placed
logarithmically within this range; to obtain a smoother output, additional data
points are generated between 800 and 1400 Hz.

To calculate the transfer function using the Impulse Response Analysis, select
Control to Output TF (Impulse Response) from the list and click on Start
analysis.

Output Impedance

For the calculation of the output impedance, a small perturbation current is
injected into the converter output using a current source that is controlled
by the Small Signal Perturbation block i’ and the output voltage response
is measured. As above, two analyses have been configured that calculate the
impedance using the AC Sweep and the Impulse Response Analysis.

Loop Gain

The demo model BuckClosedLoop implements the controlled buck converter
shown below. A PID controller regulates the output voltage to 15 volts.

For the calculation of the voltage loop gain, the Small Signal Gain block Loop
Gain Meter has been inserted into the feedback path. If you look under the
mask of the Small Signal Gain, you can see how the block both injects a small
perturbation and measures the system response.

174

Usage in PLECS Standalone

15
Vref

Scope+−

PWM

sm

~
vo'

V: 28 R: 3V

A

FET
D

L: 50e-6

C: 500e-6

PID
Controller

Verr m

Loop Gain Meter
~

I ~
i'

To calculate the loop gain, select Analysis tools... from the Simulation
menu, then choose Closed Loop Gain from the list of analyses and click
Start analysis.

175

7 Analysis Tools

Usage in PLECS Blockset

In PLECS Blockset, you configure analyses by copying the appropriate blocks
from the Analysis Tools library in PLECS Extras into your model.

Steady-State Analysis

To perform a steady-state analysis, copy the Steady-State Analysis block (see
page 739) into your model. An analysis can be run interactively from the block
dialog or via a MATLAB command. The calling syntax is

plsteadystate(block);

where block is the Simulink handle or the full block path of the Steady-State
Analysis block. The block handle or path can be followed by parameter/value
pairs. Otherwise, the settings specified in the block dialog are used.

The following table lists the parameters of the Steady-State Analysis block.
The Parameter column shows the parameter names to be used with the
plsteadystate command. The Description column indicates whether and
where you can set the value in the dialog box. Parameters that are not acces-
sible in the dialog box can be modified using the set_param command.

Steady-State Analysis Parameters

Parameter Description

TimeSpan For a fixed system period, the period length;
this is the least common multiple of the pe-
riods of independent sources in the system.
For a variable system period, the maximum
time span during which to look for a trigger
event marking the end of a period. Set by the
System period length/Max simulation time
span field.

TStart Simulation start time. Set by the Simulation
start time field.

176

Usage in PLECS Blockset

Steady-State Analysis Parameters (contd.)

Parameter Description

Tolerance Relative error tolerance used in the conver-
gence criterion. Set by the Termination tol-
erance field.

MaxIter Maximum number of iterations allowed. Set by
the Max number of iterations field.

Display Specifies the level of detail of the diagnostic
messages displayed in the command window
(iteration, final, off). Set by the Display
drop-down list.

HideScopes Hide all Simulink scope windows during an
analysis in order to save time.

HiddenStates Specifies how to handle Simulink blocks with
‘hidden’ states, i.e. states that are not stored in
the state vector (error, warning, none). Set by
the Hidden model states drop-down list.

FinalStateName Name of a MATLAB variable used to store the
steady-state vector at the end of an analysis.
Set by the Steady-state variable field.

NCycles Number of steady-state cycles that should be
simulated at the end of an analysis. Set by the
Show steady-state cycles field.

JPert Relative perturbation of the state variables
used to calculate the approximate Jacobian
matrix.

JacobianCalculation Controls the way the Jacobian matrix is calcu-
lated (full, fast). The default is fast.

NInitCycles Number of cycle-by-cycle simulations that
should be performed before the actual steady-
state analysis. This parameter can be used to
provide the algorithm with a better starting
point. The default is 0.

177

7 Analysis Tools

These examples show how to run analyses for the block Steady State in the
model mymodel:

plsteadystate('mymodel/Steady State');

starts an analysis using the parameters specified in the dialog box.

plsteadystate('mymodel/Steady State','TStart',0,...
'FinalStateName','x0');

plsteadystate('mymodel/Steady State','TStart',1,...
'FinalStateName','x1');

performs two analyses with different start times and assigns the resulting
steady-state vectors to two different variables x0 and x1. This is useful e.g.
if the model has a reference signal with a step change and you want to deter-
mine the steady state before and after the change.

AC Sweep / Loop Gain Analysis

To perform an AC sweep, copy the AC Sweep block (see page 728) into your
model. The block outputs a perturbation signal, which must be injected into
the system. The system response must be fed back into the block input.

To perform a loop gain analysis, copy the Loop Gain Analysis (AC Sweep)
block (see page 734) into your model and insert it into the path of a feedback
loop.

An analysis can be run interactively from the block dialogs or via a MATLAB
command. The calling syntax is

placsweep(block);

where block is the Simulink handle or the full block path of the AC Sweep or
Loop Gain Analysis block. The block handle or path can be followed by param-
eter/value pairs. Otherwise, the settings specified in the block dialog are used.

The following table lists the parameters of the AC Sweep and Loop Gain Anal-
ysis blocks. The Parameter column shows the parameter names to be used
with the placsweep command. The Description column indicates whether
and where you can set the value in the dialog box. Parameters that are not
accessible in the dialog box can be modified using the set_param command.

178

Usage in PLECS Blockset

AC Analysis Parameters

Parameter Description

TimeSpan Period length of the unperturbed system. Set by
the System period length field.

TStart Simulation start time. Set by the Simulation
start time field.

FreqRange Range of the perturbation frequencies. Set by the
Frequency sweep range field.

FreqScale Specifies whether the sweep frequencies should be
distributed on a linear or logarithmic scale. Set
by the Frequency sweep scale field.

NPoints Number of data points generated. Set by the
Number of points field.

InitialAmplitude Perturbation amplitude at the first perturbation
frequency. Set by the Amplitude at first freq
field.

Method Method used for obtaining the periodic steady-
state operating point of the perturbed system:
Brute force simulation - start from model
initial state, Brute force simulation
- start from unperturbed steady state,
Steady-state analysis - start from model
initial state, Steady-state analysis - start
from unperturbed steady state.
Set by the Method drop-down list.

Tolerance Relative error tolerance used in the convergence
criterion. Set by the Termination tolerance field.

MaxIter Maximum number of iterations allowed. Set by the
Max number of iterations field.

Display Specifies the level of detail of the diagnostic
messages displayed in the command window
(iteration, final, off). Set by the Display drop-
down list.

179

7 Analysis Tools

AC Analysis Parameters (contd.)

Parameter Description

HideScopes Hide all Simulink scope windows during an analy-
sis in order to save time.

HiddenStates Specifies how to handle Simulink blocks with ’hid-
den’ states, i.e. states that are not stored in the
state vector (error, warning, none). Set by the
Hidden model states drop-down list.

OutputName Name of a MATLAB variable used to store the
transfer function at the end of an analysis. Set by
the Output variable field.

BodePlot Plot a Bode diagram of the transfer function at the
end of an analysis. Set by the Plot Bode diagram
drop-down list.

JPert Relative perturbation of the state variables used to
calculate the approximate Jacobian matrix.

NInitCycles If a steady-state analysis is used to obtain the
starting point of the ac analysis (see parameter
Method above), this parameter specifies the num-
ber of cycle-by-cycle simulations that should be
performed before the steady-state analysis. This
parameter can be used to provide the algorithm
with a better starting point. The default is 0.

These examples show how to run analyses for the block AC Sweep in the model
mymodel:

placsweep('mymodel/AC Sweep');

starts an analysis using the parameters specified in the dialog box.

placsweep('mymodel/AC Sweep','TStart',0,...
'OutputName','T0');

placsweep('mymodel/AC Sweep','TStart',1,...
'OutputName','T1');

180

Usage in PLECS Blockset

performs two analyses with different start times and assigns the resulting
transfer functions to two different variables T0 and T1. This is useful e.g. if
the model has a reference signal with a step change and you want to deter-
mine the transfer function before and after the change.

Impulse Response Analysis

To perform an impulse response analysis, copy the Impulse Response Analysis
block (see page 732) into your model. The block outputs a perturbation sig-
nal, which must be injected into the system. The system response must be fed
back into the block input.

An analysis can be run interactively from the block dialogs or via a MATLAB
command. The calling syntax is

plimpulseresponse(block);

where block is the Simulink handle or the full block path of the Impulse Re-
sponse Analysis block. The block handle or path can be followed by parame-
ter/value pairs. Otherwise, the settings specified in the block dialog are used.

The following table lists the parameters of the Impulse Response Analy-
sis block. The Parameter column shows the parameter names to be used
with the plimpulseresponse command. The Description column indicates
whether and where you can set the value in the dialog box. Parameters that
are not accessible in the dialog box can be modified using the set_param com-
mand.

Impulse Response Analysis Parameters

Parameter Description

TimeSpan Period length of the unperturbed system. Set by the
System period length field.

TStart Simulation start time. Set by the Simulation start
time field.

FreqRange Range of the perturbation frequencies. Set by the
Frequency sweep range field.

181

7 Analysis Tools

Impulse Response Analysis Parameters (contd.)

Parameter Description

FreqScale Specifies whether the sweep frequencies should be dis-
tributed on a linear or logarithmic scale. Set by the
Frequency sweep scale field.

NPoints Number of data points generated. Set by the Number
of points field.

Perturbation Perturbation amplitude of the discrete impulse. Set by
the Perturbation field.

Compensation Specifies whether and how the effect of the sam-
pling should be compensated (none, discrete pulse,
external reference). Set by the Compensation for
discrete pulse drop-down list.

Tolerance Relative error tolerance used in the convergence cri-
terion of the initial steady-state analysis. Set by the
Termination tolerance field.

MaxIter Maximum number of iterations allowed during the
initial steady-state analysis. Set by the Max number
of iterations field.

Display Specifies the level of detail of the diagnostic messages
displayed in the command window (iteration, final,
off). Set by the Display drop-down list.

HideScopes Hide all Simulink scope windows during an analysis in
order to save time.

HiddenStates Specifies how to handle Simulink blocks with ’hidden’
states, i.e. states that are not stored in the state vector
(error, warning, none). Set by the Hidden model
states drop-down list.

OutputName Name of a MATLAB variable used to store the trans-
fer function at the end of an analysis. Set by the Out-
put variable field.

182

Usage in PLECS Blockset

Impulse Response Analysis Parameters (contd.)

Parameter Description

BodePlot Plot a Bode diagram of the transfer function at the
end of an analysis. Set by the Plot Bode diagram
drop-down list.

JPert Relative perturbation of the state variables used to
calculate the approximate Jacobian matrix.

NInitCycles Number of cycle-by-cycle simulations that should be
performed before the initial steady-state analysis. This
parameter can be used to provide the algorithm with a
better starting point. The default is 0.

Multitone / Loop Gain Analysis

To perform a multitone analysis, copy the Multitone Analysis block (see page
737) into your model. The block outputs a perturbation signal, which must be
injected into the system. The system response must be fed back into the block
input.
To perform a loop gain analysis, copy the Loop Gain Analysis (Multitone)
block (see page 735) into your model and insert it into the path of a feedback
loop.
An analysis can be run interactively from the block dialogs or via a MATLAB
command. The calling syntax is

plmultitone(block);

where block is the Simulink handle or the full block path of the Multitone
Analysis or Loop Gain Analysis block. The block handle or path can be fol-
lowed by parameter/value pairs. Otherwise, the settings specified in the block
dialog are used.
The following table lists the parameters of the Multitone Analysis and Loop
Gain Analysis blocks. The Parameter column shows the parameter names
to be used with the placsweep command. The Description column indicates
whether and where you can set the value in the dialog box. Parameters that
are not accessible in the dialog box can be modified using the set_param com-
mand.

183

7 Analysis Tools

Multitone Analysis Parameters

Parameter Description

FreqRange Range of the perturbation frequencies. Set by the
Frequency sweep range field.

Amplitude Amplitude of the perturbation signal. Set by the
Amplitude field.

TStart Simulation start time. Set by the Simulation
start time field.

Display Specifies the level of detail of the diagnostic
messages displayed in the command window
(iteration, final, off). Set by the Display drop-
down list.

HideScopes Hide all Simulink scope windows during an analy-
sis in order to save time.

OutputName Name of a MATLAB variable used to store the
transfer function at the end of an analysis. Set by
the Output variable field.

BodePlot Plot a Bode diagram of the transfer function at the
end of an analysis. Set by the Plot Bode diagram
drop-down list.

Extraction of State-Space Matrices

PLECS allows you to extract the state-space matrices describing the linear
portion of a circuit model for a given combination of switch positions. The
commands used for this purpose are listed below. In each of the commands
circuit is the full Simulink path of a PLECS Circuit block.

names = plecs('get', circuit, 'StateSpaceOrder');

returns a struct containing the names of the components associated with the
circuit model’s inputs, outputs, states and switches.

plecs('set', circuit, 'SwitchVector', switchpos);

184

Usage in PLECS Blockset

sets the vector of switch positions for the subsequent analysis to switchpos.

t = plecs('get', circuit, 'Topology');

returns a struct with the state-space matrices A, B, C, D and I for the vec-
tor of switch positions specified by the previous command. The matrix I is the
identity matrix if all electrical states are independent. Otherwise it specifies
the relationship between the dependent variables.

Application Example

This section demonstrates the application of the analysis tools in PLECS
Blockset for the design of the regulated buck converter system operating at
a switching frequency of 100 kHz shown in the figure below. The converter
shall supply a regulated 15 volts to a resistive load at a nominal load current
of 5 amperes.

v_ref

15

ScopeModulator

PWM

Compensator

PID

Circuit

s

i_L

v_load

PLECS
Circuit

FET
DV: 28

s
1

L: 50e−6 i_L
1

C: 500e−6

A

v_load
2

V R: 3

The examples used in this section follow the design example in [Erickson],
chapter 9. They have been implemented in the demo models plBuckSweep,
plBuckImpulseResponse and plBuckLoop.

Steady-State Analysis

We first examine the open-loop behavior of the system. In order to get the
desired output voltage we need to apply a fixed duty-cycle of Vout/Vsrc =
15V/28V. You can verify this by using the Steady-State Analysis block to ob-
tain the steady-state waveform of the output voltage.
For this purpose you copy the block into the model and double-click it to open
the dialog box. The parameter System period length is already set to the
correct value, i.e. 1e-5. Set the parameter Show steady-state cycles to e.g.
10 so that you can more easily check that the system is indeed in the steady
state when the analysis finishes. Then click on Start analysis. The algorithm
should converge after the first iteration, and the scope should show the wave-
form in the figure below.

185

7 Analysis Tools

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

14.998

15

15.002

v lo
ad

 /
V

t / s

Steady-state output voltage

AC Sweep

Open-loop control-to-output transfer function In order to determine the
control-to-output transfer function you need to perturb the steady-state duty-
cycle and measure the corresponding perturbation of the output voltage. This
is achieved by connecting an AC Sweep block as shown below. The block out-
put is the perturbation signal; it is added to the steady-state duty cycle. The
block input is connected to the load voltage signal.

The initial amplitude of the perturbation is set to 1e-3 which is approx.
2/1000 of the duty cycle. We want to sweep a frequency range between 100Hz
and 50kHz with a few extra points between 800Hz and 1200Hz. This is
achieved by setting the parameter to [100 800:50:1200 50000]. As ex-
pected, the resulting bode plot of the transfer function shows a double pole
at f0 = 1/(2π

√
LC) ≈ 1kHz and a dc gain of G0 = 28V ≈ 29dB.

Open-loop output impedance Although not required for the compensator
design we will now calculate the output impedance for demonstration pur-
poses. To do so we need to inject a small ac current into the converter output
and measure the resulting perturbation of the output voltage. We therefore
connect a controlled current source in parallel with the load resistor as shown
below. This current source is controlled by the perturbation signal of the AC
Sweep block. The block input is again connected to the load voltage signal.
The average steady-state output current is 5 amperes; we therefore set the
initial perturbation amplitude to 1e-2.

Impulse Response Analysis

Alternatively you can determine the open-loop transfer functions using the
Impulse Response Analysis block as shown in the figure below. In this anal-
ysis method the calculation of an individual output point is relatively inex-
pensive; we therefore set the number of points to 300 and extend the sweep

186

Usage in PLECS Blockset

m

15/28

ScopeModulator

PWM

[m_ac]

[m_ac]

Control to Output
Transfer Function

PLECS
AC Sweep

Circuit

s

i_L

v_load

PLECS
Circuit

FET
DV: 28

s
1

L: 50e−6 i_L
1

C: 500e−6

A

v_load
2

V R: 3

−40

−20

0

20

40
|G

| /
 d

B

10
2

10
3

10
4

−180

−90

0

∠
 G

 /
°

f / Hz

Open-loop control-to-output transfer function

range to [10 50000]. In order to compensate for the discrete rectangular
pulse used to perturb the system, we choose the setting external reference
for the control-to-output transfer function and discrete pulse for the output
impedance.

Loop Gain Analysis

Compensator settings The compensator should attain a crossover fre-
quency of fc = 5kHz. At this frequency the open-loop control-to-output transfer
function has a phase of nearly −180◦. It should be lifted by 52◦ to get a peak
overshoot of 16%. This is achieved using a PD compensator with a zero at
fz = 1.7kHz, a pole at fp = 14.5kHz and a dc gain of k = (fc/f0)2

√
fz/fp/G0 ≈

0.3. For a zero stationary error a PI compensator with an inverted zero at
fZ = 500Hz is added.

The compensator is implemented as shown above. The compensator output is
limited to 0.1. . . 0.9. In order to prevent windup problems during the steady-
state analysis the integrator is limited to the same range.

187

7 Analysis Tools

m

15/28
Scope

Output Impedance

PLECS
AC Sweep

Modulator

PWM

[i_ac]

[i_ac]

Circuit

i_ac

s

i_L

v_load

PLECS
Circuit

V: 28

i_L
1

v_load
2

s
2

i_ac
1R: 3V

A

FET
D

L: 50e−6

C: 500e−6

−40

−20

0

|Z
| /

 d
BΩ

10
2

10
3

10
4

−90

0

90

∠
 Z

 /
°

f / Hz

Open-loop output impedance

m
15/28

ScopeModulator

PWM

[m_ac]

[m_ac]

Control to Output
Transfer Function

PLECS
Impulse Resp.

Analysis

Circuit

s

i_L

v_load

PLECS
Circuit

m
15/28 Scope

Output Impedance

PLECS
Impulse Resp.

Analysis

Modulator

PWM

[i_ac]

[i_ac]

Circuit

i_ac

s

i_L

v_load

PLECS
Circuit

Using the Impulse Response Analysis block

Loop gain The gain of the closed control loop is measured by inserting the
Loop Gain Analysis block into the loop path. A good place is the feedback path
as shown below. The average steady-state load voltage is 15 volts; the initial
perturbation amplitude is therefore chosen as 1e-2. The convergence of the
initial steady-state analysis can be accelerated by pre-charging the capacitor
to its average steady-state voltage.

The resulting bode plot of the closed-loop gain shown in the figure below. Also
shown are the open-loop control-to-output function with a dashed line and the
PID compensator transfer function with a dotted line. As you can see, the de-
sign goals for crossover frequency and phase margin have been reached.

188

Usage in PLECS Blockset

State-Space Averaging

Another method for obtaining the open-loop transfer functions of a circuit is a
technique called state-space averaging. This topic is fairly complex and could
easily fill a book of its own. This manual therefore assumes that you are fa-
miliar with the concept and just highlights how to use PLECS in the process.
The code examples given here are collected in the demo M-file plSSADemo.

The small-signal ac model of a dc converter operating in continuous conduc-
tion mode (CCM) is described by the equation system

d

dt
x̃(t) = Āx̃(t) + B̄ũ(t) +

{
(A1 −A2)x̄ + (B1 −B2)ū

}
m̃(t)

ỹ(t) = C̄x̃(t) + D̄ũ(t) +
{

(C1 −C2)x̄ + (D1 −D2)ū
}
m̃(t)

where the quantities x̃(t), ũ(t), ỹ(t) and m̃(t) are small ac variation around
the operating point x̄, ū, ȳ and m̄. The averaged state-space matrices Ā, B̄, C̄

PI CompensatorPD Compensator

Out
1

num(s)

den(s)
Saturation1

s−K−

0.3
In
1

−20

0

20

40

|G
| /

 d
B

10
1

10
2

10
3

10
4

10
5

−90

0

90

∠
 G

 /
°

f / Hz

PID compensator and transfer function

189

7 Analysis Tools

and D̄ are defined as

Ā = m̄A1 + (1− m̄)A2

B̄ = m̄B1 + (1− m̄)B2

C̄ = m̄C1 + (1− m̄)C2

D̄ = m̄D1 + (1− m̄)D2

where the subscript 1 denotes the interval when the switch is conducting and
the diode blocking, and the subscript 2 denotes the interval when the switch is
blocking and the diode conducting.

You can use PLECS to calculate the different matrices A1, A2 etc. and from
these the various transfer functions. Using the buck converter from the previ-
ous example, the first step is to determine the internal order of the switches:

load_system('plBuckSweep');

v_ref

15

ScopeModulator

PWM

Loop Gain

PLECS
Loop Gain
Analysis

Compensator

PID

Circuit

s

i_L

v_load

PLECS
Circuit

FET
DV: 28

s
1

L: 50e−6 i_L
1

C: 500e−6

A

v_load
2

V R: 3

−40

−20

0

20

40

|G
| /

 d
B

10
2

10
3

10
4

−180

−90

0

90

∠
 G

 /
°

f / Hz

Closed-loop gain

190

Usage in PLECS Blockset

names = plecs('get', 'plBuckSweep/Circuit', ...
'StateSpaceOrder');

names.Switches

ans =
'Circuit/FET'
'Circuit/D'

Next you retrieve the state-space matrices for the two circuit topologies:

plecs('set', 'plBuckSweep/Circuit', 'SwitchVector', [1 0]);
t1 = plecs('get', 'plBuckSweep/Circuit', 'Topology');

plecs('set', 'plBuckSweep/Circuit', 'SwitchVector', [0 1]);
t2 = plecs('get', 'plBuckSweep/Circuit', 'Topology');

Now you can calculate the averaged state-space matrices:

m = 15/28;
A = t1.A*m + t2.A*(1-m);
B = t1.B*m + t2.B*(1-m);
C = t1.C*m + t2.C*(1-m);
D = t1.D*m + t2.D*(1-m);

Output impedance The output impedance is the transfer function from a
state-space input (the current source I_ac) to a state-space output (the volt-
meter Vm). Such a transfer function is given by:

Ỹ(s)

Ũ(s)
= C̄(sI− Ā)−1B̄ + D̄

Since the circuit model is a MIMO (multi-input multi-output) model, you need
to specify the indices of the proper elements in the input and output vector.
You can identify them using the fields Inputs and Outputs of the struct names
that you retrieved earlier:

names.Inputs

ans =
'Circuit/V_dc'
'Circuit/I_ac'

191

7 Analysis Tools

names.Outputs

ans =
'Circuit/Vm'
'Circuit/Am'
'Circuit/FET'
'Circuit/FET'
'Circuit/D'
'Circuit/D'

So, the output impedance is the transfer function from input 2 to output 1. If
you have the Control System Toolbox you can now display the Bode diagram:

bode(ss(A,B(:,2),C(1,:),D(1,2)), {2*pi*100, 2*pi*50000})

The figure below shows the output impedance drawn with a solid line. The
dots represent the data points returned by the ac sweep.

−40

−20

0

|Z
| /

 d
BΩ

10
2

10
3

10
4

−90

0

90

∠
 Z

 /
°

f / Hz

Open-loop output impedance

Open-loop control-to-output transfer function The control-to-output
transfer function describes the effect of the small ac variation m̃ on the sys-
tem outputs. From the small-signal ac model equations we find that

Ỹ(s)

M̃(s)
= Cco(sI−Aco)−1Bco + Dco

192

Usage in PLECS Blockset

with

Aco = Ā

Bco =
{
− (A1 −A2)Ā−1B̄ + (B1 −B2)

}
ū

Cco = C̄

Dco =
{
− (C1 −C2)Ā−1B̄ + (D1 −D2)

}
ū

Note that Bco and Dco are column vectors since there is only one scalar input
variable, m̃. The vector ū is a column vector consisting of the dc input voltage
and the small-signal ac current.

This leads to the following program code:

u = [28; 0];

B_co = (-(t1.A-t2.A)*(A\B)+(t1.B-t2.B))*u;
D_co = (-(t1.C-t2.C)*(A\B)+(t1.D-t2.D))*u;

bode(ss(A,B_co,C(1,:),D_co(1)), {2*pi*100, 2*pi*50000})

The figure below shows the control-to-output transfer function drawn with a
solid line. The dots represent the data points returned by the ac sweep.

−40

−20

0

20

40

|G
| /

 d
B

10
2

10
3

10
4

−180

−90

0

∠
 G

 /
°

f / Hz

Open-loop control-to-output transfer function

193

7 Analysis Tools

Reference

R.W. Erickson, D. Maksimović, "Fundamentals of Power Electronics, 2nd
Ed.", Kluwer Academic Publishers, 2003.

194

8

C-Scripts

C-Scripts provide a powerful and comfortable mechanism for implementing
custom control blocks in the C programming language. They enable you to in-
teract with the solver engine on a level very similar to that of built-in blocks.

Typical applications where C-Scripts are useful include:

• Implementing complex non-linear and/or piecewise functions. These would
otherwise need to be modeled with complex block diagrams that are hard to
read and maintain.

• Implementing modulators or pulse generators that require exact but flexible
time step control.

• Incorporating external C code, e.g. for a DSP controller, into a simulation
model.

There is no need to manually compile any code or even to install a compiler. A
built-in compiler translates your C code on-the-fly to native machine code and
links it dynamically into PLECS.

A detailed description of how C-Scripts work is given in the following section.
For a quick start you can also have a look at the C-Script examples further
below.

How C-Scripts Work

Since C-Scripts interact so closely with the solver engine, a good understand-
ing of how a dynamic system solver works is advantageous. This is described
in detail in the chapter “How PLECS Works” (on page 25).

8 C-Scripts

C-Script Functions

A C-Script block, like any other control block, can be described as a mathe-
matical (sub-)system having a set of inputs u, outputs y and state variables xc,
xd that are related to each other by a set of equations:

y = foutput(t, u, xc, xd)

xnext
d = fupdate(t, u, xc, xd)

ẋc = fderivative(t, u, xc, xd)

A C-Script block has an individual code section for each of these functions and
two additional sections for code to be executed at the start and termination
of a simulation. The C code that you enter in these sections is automatically
wrapped into C functions; the actual function interface is hidden to allow for
future extensions. You can access block variables such as inputs, outputs and
states by means of special macros that are described further below. The solver
calls these C functions as required during the different stages of a simulation
(see “Model Execution” on page 31).

Start Function

The start function is called at the beginning of a simulation. If the C-Script
has continuous or discrete state variables they should be initialized here using
the macros ContState(i) and DiscState(i).

Output Function

The output function is called during major and minor time steps in order
to update the output signals of the block. The block inputs and outputs
and the current time can be accessed with the macros InputSignal(i, j),
OutputSignal(i, j) and CurrentTime.

If you need to access any input signal during the output function call, you
must check the Input has direct feedthrough box on the Setup pane of the
C-Script dialog. This flag influences the block execution order and the occur-
rence of algebraic loops (see “Block Sorting” on page 29).

196

How C-Scripts Work

In general, output signals should be continuous and smooth during minor
time steps; discontinuities or sharp bends should only occur during major time
steps. Whether or not the call is made for a major time step can be inquired
with the IsMajorStep macro. For details see “Modeling Discontinuities” below.

Note It is not safe to make any assumptions about the progression of time be-
tween calls to the output function. The output function may be called multiple
times during the same major time step, and the time may jump back and forth
between function calls during minor time steps. Code that should execute ex-
actly once per major time step should be placed in the update function.

Update Function

If the block has discrete state variables, the update function is called once
during a major time step after the output functions of all blocks have been
processed. During this call, the discrete state variables should be updated us-
ing the DiscState macro.

Derivative Function

If the block has continuous state variables, the derivative function is called
during the integration loop of the solver. During this call, the continuous state
derivatives should be updated using the ContDeriv macro.

Derivatives should be continuous and smooth during minor time steps; discon-
tinuities or sharp bends should only occur during major time steps. For details
see “Modeling Discontinuities” below.

Terminate Function

The terminate function is called at the end of a simulation – regardless of
whether the simulation stop time has been reached, the simulation has been
stopped interactively, or an error has occurred. Use this function to free any
resources that you may have allocated during the start function (e.g. file han-
dles, memory etc.).

197

8 C-Scripts

Code Declarations

This code section is used for global declarations and definitions (that is, global
in the scope of the C-Script block). This is the place to include standard li-
brary headers (e.g. math.h or stdio.h) and to define macros, static variables
and helper functions that you want to use in the C-Script functions.

You can also include external source files. The directory containing the model
file is automatically added to the included search path, so you can specify the
source file path relative to the model file.

Modeling Discontinuities

If the behavior of your C-Script block changes abruptly at certain instants,
you must observe the following two rules in order to obtain accurate re-
sults:

1 If the time, at which a discontinuity or event occurs, is not known a priori
but depends on the block inputs and/or states, you must define one or more
zero-crossing signals, which aid the solver in locating the event. Failure to
do so may result in a jitter on the event times.

2 During minor time steps, continuous state derivatives and output signals
must be continuous and smooth functions. Failure to observe this may lead
to gross numerical integration errors.

Defining Zero-crossing Functions

To define zero-crossing signals, register the required number of signals on
the Setup pane of the C-Script dialog. In the output function, use the macro
ZCSignal(i) to assign values to the individual zero-crossing signals depending
e.g. on the block inputs or states or the current simulation time. The solver
constantly monitors all zero-crossing signals of all blocks. If any one signal
changes its sign during the current integration step, the step size is reduced
so that the next major time step occurs just after the first zero-crossing. (See
also “Event Detection Loop” on page 32.)

For instance, to model a comparator that must change its output when the
input crosses a threshold of 1, you should define the following zero-crossing
signal:

ZCSignal(0) = InputSignal(0, 0) - 1.;

198

How C-Scripts Work

Without the aid of the zero-crossing signal, the solver might make one step at
a time when the input signal is e.g. 0.9 and the next step when the input sig-
nal has already increased to e.g. 1.23, so that the C-Script block would change
its output too late.

With the zero-crossing signal, and provided that the input signal is continu-
ous, the solver will be able to adjust the step size so that the C-Script output
will change at the correct time.

Note If a zero-crossing signal depends solely on the simulation time, i.e. if an
event time is known a priori, it is recommended to use a discrete-variable sam-
ple time and the NextSampleHit macro instead. (See “Discrete-Variable Sample
Time” below.)

Keeping Functions Continuous During Minor Time Steps

The solver integrates the continuous state derivatives over a given interval
(i.e. the current time step) by evaluating the derivatives at different times in
the interval. It then fits a polynomial of a certain order to approximate the
integral. (See also “Integration Loop” on page 32.) The standard Dormand-
Prince solver, for instance, uses 6 derivative evaluations and approximates the
integral with a polynomial of 5th order.

Obviously, the derivative of this polynomial is again a polynomial of one order
less. On the other hand, to approximate a discontinuous or even just a non-
smooth derivative function, a polynomial of infinite order would be required.
This discrepancy may lead to huge truncation errors. It is therefore vital to
describe the continuous state derivatives as piecewise smooth functions and
make sure that only one subdomain of these functions is active throughout
one integration step.

The output signal of a C-Script block might be used as the input signal of an
integrator and thus might become the derivative of a continuous state vari-
able. Therefore, output signals should be described as piecewise smooth func-
tions as well.

Returning to the example of the comparator above, the complete output func-
tion code should look like this:

if (IsMajorStep)

199

8 C-Scripts

{
if (InputSignal(0, 0) >= 1.)

OutputSignal(0, 0) = 1.;
else

OutputSignal(0, 0) = 0.;
}

ZCSignal(0) = InputSignal(0, 0) - 1.;

The condition if (IsMajorStep) ensures that the output signal can only
change in major steps. It remains constant during the integration loop re-
gardless of the values that the input signal assumes during these minor time
steps. The zero-crossing signal, however, is also updated in minor time steps
during the event detection loop of the solver.

Sample Time

A C-Script block can model a continuous system, a discrete system, or even
a hybrid system having both continuous and discrete properties. Depending
on which kind of system you want to model, you need to specify an appropri-
ate Sample time on the Setup pane of the C-Script dialog. The sample time
determines at which time steps (and at which stages) the solver calls the dif-
ferent C-Script functions.

Continuous Sample Time

Blocks with a continuous sample time (setting 0 or [0, 0]) are executed at
every major and minor time step. You must choose a continuous sample time
if

• the C-Script models a continuous (or piecewise continuous) function,
• the C-Script has continuous states or,
• the C-Script registers one or more zero-crossing signals for event detection.

Semi-Continuous Sample Time

Blocks with a semi-continuous sample time (setting [0, -1]) are executed at
every major time step but not at minor time steps. You can choose a semi-
continuous instead of a continuous sample time if the C-Script produces only
discrete output values and does not need zero-crossing signals.

200

How C-Scripts Work

Discrete-Periodic Sample Time

Blocks with a discrete-periodic sample time (setting Tp or [Tp, To]) are exe-
cuted at regularly spaced major time steps. The sample period Tp must be a
positive real number. The sample offset To must be a positive real number in
the interval 0 ≤ To < Tp; it may be omitted if it is zero.

The time steps, at which the output and update functions are executed, are
calculated as n · Tp + To with an integer n.

Discrete-Variable Sample Time

Blocks with a discrete-variable sample time (setting -2 or [-2, 0]) are exe-
cuted at major time steps that are specified by the blocks themselves.

In a C-Script you assign the time, when the block should be executed next,
to the macro NextSampleHit. This can be done either in the output or update
function. At the latest, after the update function call, the NextSampleHit must
be greater than the current simulation time. Otherwise, the simulation will be
aborted with an error.

If a C-Script only has a discrete-variable sample time, the time of the first
sample hit must be assigned in the start function. Otherwise, the C-Script
will never be executed. During the start function, the simulation start time
is available via the macro CurrentTime.

Note For discrete-variable sample times, PLECS Blockset can control the
time steps taken by the Simulink solvers only indirectly by using an internal
zero-crossing signal. Therfore, the actual simulation time at a discrete-variable
sample hit may be slightly larger than the value that was specified as the next
sample hit.

The solvers of PLECS Standalone, however, can evaluate the sample hit re-
quests directly and are therefore guaranteed to meet the requests exactly.

Multiple Sample Times

If you want to model a hybrid system you can specify multiple sample times in
different rows of an n× 2 matrix. For example, if your C-Script has continuous

201

8 C-Scripts

states but you must also ensure that it is executed every 0.5 seconds with an
offset of 0.1 seconds, you would enter [0, 0; 0.5, 0.1].

You can use the macro IsSampleHit(i) in the output and update functions in
order to inquire which of the registered sample times has a hit in the current
time step. The index i is a zero-based row number in the sample time matrix.
In the above example, if your C-Script should perform certain actions only at
the regular sampling intervals, you would write

if (IsSampleHit(1))
{
// this code is only executed at t == n*0.5 + 0.1

}

To access the sample times during execution of the C-Script, use the macros
SampleTimePeriod(i) and SampleTimeOffset(i). In the case of inherited
sample times, the actual resolved values are returned, not [-1, 0] (see “Sam-
ple Times” on page 36).

User Parameters

If you want to implement generic C-Scripts that can be used in different con-
texts, you can pass external parameters into the C functions.

External parameters are entered as a comma-separated list in the Param-
eters field on the Setup pane of the C-Script dialog. The individual param-
eters can be specified as MATLAB expressions and can reference workspace
variables. They must evaluate to real scalars, vectors, matrices, 3d-arrays or
strings.

Within the C functions you can inquire the number of external parame-
ters with the macro NumParameters. The macros ParamNumDims(i) and
ParamDim(i, j) return the number of dimensions of the individual parame-
ters and their sizes. In the case of strings, 1 and the length of the string mea-
sured in C characters (char) is returned, respectively. Note that because the
strings are UTF-8 encoded, the length returned by ParamDim(i, j) may be
larger than the number of unicode characters in the string.

To access the actual parameter values, use the macro ParamRealData(i, j),
where j is a linear index into the data array. For example, to access the value
in a certain row, column and page of a 3d-array, you write:

202

C-Script Examples

int rowIdx = 2;
int colIdx = 0;
int pageIdx = 1;
int numRows = ParamDim(0, 0);
int numCols = ParamDim(0, 1);
int elIdx = rowIdx + numRows*(colIdx + numCols*pageIdx);
double value = ParamRealData(0, elIdx);

To access string parameters, use the macro ParamStringData(i). For exam-
ple, to use the second parameter as an error message, you may write:

SetErrorMessage(ParamStringData(1));

Runtime Checks

If the box Enable runtime checks on the Setup pane of the C-Script dialog
is checked, C-Script macros that access block data (e.g. signals values, states,
parameters etc.) are wrapped with protective code to check whether an array
index is out of range. Also, the C-Script function calls are wrapped with code
to check for solver policy violations such as modifying states during minor
time steps or accessing input signals in the output function without enabling
direct feedthrough.
These runtime checks have a certain overhead, so once you are sure that your
C-Script is free of errors you can disable them in order to increase the simu-
lation speed. This is not recommended, however, because in this case access
violations in your C-Script may cause PLECS to crash.

Note The runtime checks cannot guard you against access violations caused
by direct memory access.

C-Script Examples

This section presents a collection of simple examples that demonstrate the
different features of the C-Script and that you can use as starting points for
your own projects. Note that the functionality of the example blocks (with the
exception of the Wrapping Integrator) is already available from blocks in the
PLECS library.

203

8 C-Scripts

A Simple Function – Times Two

The first example implements a block that simply multiplies a signal with 2.
This block is described by the following system equation:

y = foutput(t, u, xc, xd) = 2 · u

Block Setup The block has one input, one output, no states and no zero-
crossing signals. It has direct feedthrough because the output function de-
pends on the current input value. Since the output signal is continuous (pro-
vided that the input signal is) the sample time is also continuous, i.e. [0, 0]
or simply 0.

Output Function Code

OutputSignal(0, 0) = 2.*InputSignal(0, 0);

In every major and minor time step, the output function retrieves the current
input value, multiplies it with 2 and assigns the result to the output.

Discrete States – Sampled Delay

This example implements a block that samples the input signals regularly
with a period of one second and outputs the samples with a delay of one pe-
riod. Such a block is described by the following set of system equations:

y = foutput(t, u, xc, xd) = xd

xnext
d = fupdate(t, u, xc, xd) = u

Remember that in a major time step the solver first calls the block output
function and then the block update function.

Block Setup The block has one input and one output. One discrete
state variable is used to store the samples. The block does not have direct
feedthrough because the input signal is not used in the output function but
only in the update function. The sample time is [1, 0] or simply 1.

Output Function Code

OutputSignal(0, 0) = DiscState(0);

Update Function Code

DiscState(0) = InputSignal(0, 0);

204

C-Script Examples

Continuous States – Integrator

This example implements a block that continuously integrates the input sig-
nal and outputs the value of the integral. Such a block is described by the fol-
lowing set of system equations:

y = foutput(t, u, xc, xd) = xc

ẋc = fderivative(t, u, xc, xd) = u

Block Setup The block has one input and one output. One continuous state
variable is used to integrate the input signal. The block does not have direct
feedthrough because the input signal is not used in the output function but
only in the derivative function. The sample time is continuous, i.e. [0, 0] or
simply 0.

Output Function Code

OutputSignal(0, 0) = ContState(0);

Derivative Function Code

ContDeriv(0) = InputSignal(0, 0);

Event Handling – Wrapping Integrator

This examples extends the previous one by implementing an integrator that
wraps around when it reaches an upper or lower boundary (e.g. 2π and 0).
Such an integrator is useful for building e.g. a PLL to avoid round-off errors
that would occur if the phase angle increased indefinitely. This wrapping prop-
erty can actually not be easily described with mathematical functions. How-
ever, the C code turns out to be fairly simple.

Block Setup The block has the same settings as in the previous example.
Additionally, it requires two zero-crossing signals, in order to let the solver
find the exact instants, at which the integrator state reaches the upper or
lower boundary.

205

8 C-Scripts

Output Function Code

#define PI 3.141592653589793
if (IsMajorStep)
{
while (ContState(0) > 2*PI)

ContState(0) -= 2*PI;
while (ContState(0) < 0)

ContState(0) += 2*PI;
}
ZCSignal(0) = ContState(0);
ZCSignal(1) = ContState(0) - 2*PI;

OutputSignal(0, 0) = ContState(0);

In every major time step, if the integrator state has gone beyond the upper or
lower boundary, 2π is added to or subtracted from the state until it lies within
the boundaries again. In every major and minor time step, the zero-crossing
signals are calculated so that they become zero when the state is 0 resp. 2π.
Finally, the integrator state is assigned to the output.

Note, that the state may not be modified during minor time steps, because
then the solver is either itself updating the state (while integrating it) or try-
ing to find the zeros of the zero-crossing functions, which in turn depend on
the state. In either case an external modification of the state will lead to un-
predictable results.

Derivative Function Code

ContDeriv(0) = InputSignal(0, 0);

Piecewise Smooth Functions – Saturation

This example implements a saturation block that is described by the following
piecewise system equation:

y = foutput(t, u, xc, xd) =

1, for u ≥ 1

u, for − 1 < u < 1

−1, for 1 ≤ u

When implementing this function, care must be taken to ensure that the ac-
tive output equation does not change during an integration loop in order to
avoid numerical errors (see “Modeling Discontinuities” on page 198).

206

C-Script Examples

Block Setup The block has one input, one output and no state variables. In
order to make sure that a major step occurs whenever the input signal crosses
the upper or lower limit, two zero-crossing signals are required.

Output Function Code

static enum { NO_LIMIT, LOWER_LIMIT, UPPER_LIMIT } mode;

if (IsMajorStep)
{
if (InputSignal(0, 0) > 1.)

mode = UPPER_LIMIT;
else if (InputSignal(0, 0) < -1.)

mode = LOWER_LIMIT;
else

mode = NO_LIMIT;
}

switch (mode)
{
case NO_LIMIT:

OutputSignal(0, 0) = InputSignal(0, 0);
break;

case UPPER_LIMIT:
OutputSignal(0, 0) = 1.;
break;

case LOWER_LIMIT:
OutputSignal(0, 0) = -1.;
break;

}

ZCSignal(0) = InputSignal(0, 0) + 1.;
ZCSignal(1) = InputSignal(0, 0) - 1.;

Ensuring that only one output equation will be used throughout an entire in-
tegration step requires a static mode variable that will retain its value be-
tween function calls. The active mode is determined in major time steps de-
pending on the input signal. In the subsequent minor time steps, the equation
indicated by the mode variable will be used regardless of the input signal.

If the step size were not properly limited and the input signal went beyond
the limits during minor time steps, so would the output signal. This is pre-
vented by the two zero-crossing signals that enable the solver to reduce the
step size as soon as the input signal crosses either limit.

207

8 C-Scripts

Note Instead of the static mode variable, a discrete state variable could also
be used to control the active equation. In this particular application a static
variable is sufficient because information needs to be passed only from one ma-
jor time step to the subsequent minor time steps.

However, if information is to be passed from one major time step to a later ma-
jor time step, a discrete state variable should be used, so that it can also be
stored between multiple simulation runs.

Multiple Sample Times – Turn-on Delay

A turn-on delay is often needed for inverter controls in order to prevent short-
circuits during commutation. When the input signal changes from 0 to 1, the
output signal will follow after a prescribed delay time, provided that the input
signal is still 1 at that time. When the input signal changes to 0, the output is
reset immediately.

Block Setup The block has one input and one output. One discrete state
variable is required to store the input signal value from the previous major
time step.

Two sample times are needed: a semi-continuous sample time so that the in-
put signal will be sampled at every major time step, and a discrete-variable
sample time to enforce a major time step exactly after the prescribed delay
time. The Sample time parameter is therefore set to [0, -1; -2, 0].

As an additional feature the delay time is defined as an external user parame-
ter.

Code Declarations

#include <float.h>
#define PREV_INPUT DiscState(0)
#define DELAY ParamRealData(0, 0)

The standard header file float.h defines two numerical constants, DBL_MAX
and DBL_EPSILON, that will be needed in the output function. Additionally,
two convenience macros are defined in order to make the following code more
readable.

208

C-Script Examples

Start Function Code

if (NumParameters != 1)
{
SetErrorMessage("One parameter required (delay time).");
return;

}
if (ParamNumDims(0) != 2

|| ParamDim(0, 0) != 1 || ParamDim(0, 1) != 1
|| DELAY <= 0.)

{
SetErrorMessage("Delay time must be a positive scalar.");
return;

}

The start function checks whether the proper number of external parameters
(i.e. one) has been provided, and whether this parameter has the proper di-
mensions and value.
Output Function Code

if (InputSignal(0, 0) == 0)
{
OutputSignal(0, 0) = 0;
NextSampleHit = DBL_MAX;

}
else if (PREV_INPUT == 0)
{
NextSampleHit = CurrentTime + DELAY;
if (NextSampleHit == CurrentTime)

NextSampleHit = CurrentTime * (1.+DBL_EPSILON);
}
else if (IsSampleHit(1))
{
OutputSignal(0, 0) = 1;
NextSampleHit = DBL_MAX;

}

If the input signal is 0, the output signal is also set to 0 according to the block
specifications. The next discrete-variable hit is set to some large number (in
fact: the largest possible floating point number) because it is not needed in
this case.
Otherwise, if the input signal is not 0 but it has been in the previous time
step, i.e. if it just changed from 0 to 1, a discrete-variable sample hit is re-
quested at DELAY seconds later than the current time.

209

8 C-Scripts

Finally, if both the current and previous input signal values are nonzero and
the discrete-variable sample time has been hit, i.e. if the delay time has just
passed and the current input is still nonzero, the output is set to 1 and the
next discrete-variable hit time is again reset to the largest possible floating
point number.

The condition if (NextSampleHit == CurrentTime) requires special expla-
nation: If DELAY is very small and the current time is very large, the sum of
these two floating point numbers might again yield the current time value
due to roundoff errors, which would lead to a simulation error. In this case
the next sample hit is increased to the smallest possible floating point number
that is still larger than the current time. Admittedly, this problem will only
occur when the current time and the delay time are more than 15 decades
apart, and so it might be considered academic.

Update Function Code

PREV_INPUT = InputSignal(0, 0);

In the update function, the current input value is stored as the previous input
value for the following time step.

C-Script Macros

The following table summarizes the macros that can be used in the C-Script
function code sections.

C-Script Data Access Macros

Macro Type Access Description

NumInputTerminals int R Returns the number of input terminals.

NumOutputTerminals int R Returns the number of output terminals.

NumInputSignals(int i) int R Returns the number of elements (i.e. the
width) of the signal connected to the ith
input terminal.

NumOutputSignals(int i) int R Returns the number of elements (i.e. the
width) of the signal connected to the ith
output terminal.

210

C-Script Macros

C-Script Data Access Macros (contd.)

Macro Type Access Description

NumContStates int R Returns the number of continuous states.

NumDiscStates int R Returns the number of discrete states.

NumZCSignals int R Returns the number of zero-crossing sig-
nals.

NumParameters int R Returns the number of user parameters.

CurrentTime double R Returns the current simulation time (resp.
the simulation start time during the start
function call).

NumSampleTime int R Returns the number of sample times.

SampleTimePeriod(int i) int R Returns the period of the ith sample time.

SampleTimeOffset(int i) int R Returns the offset of the ith sample time.

IsMajorStep int R Returns 1 during major time steps, else 0.

IsSampleHit(int i) int R Returns 1 if the ith sample time currently
has a hit, else 0.

NextSampleHit double R/W Specifies the next simulation time when
the block should be executed. This is rele-
vant only for blocks that have registered a
discrete-variable sample time.

InputSignal(int i, j) double R Returns the value of the jth element of the
ith input signal.

OutputSignal(int i, j) double R/W Provides access to the value of the jth
element of the ith output signal. Output
signals may only be changed during the
output function call.

ContState(int i) double R/W Provides access to the value of the ith con-
tinuous state. Continuous state variables
may not be changed during minor time
steps.

211

8 C-Scripts

C-Script Data Access Macros (contd.)

Macro Type Access Description

ContDeriv(int i) double R/W Provides access to the derivative of the ith
continuous state.

DiscState(int i) double R/W Provides access to the value of the ith dis-
crete state. Discrete state variables may
not be changed during minor time steps.

ZCSignal(int i) double R/W Provides access to the ith zero-crossing
signal.

ParamNumDims(int i) int R Returns the number of dimensions of the
ith user parameter.

ParamDim(int i, j) int R Returns the jth dimension of the ith user
parameter.

ParamRealData(int i, j) double R Returns the value of the jth element of the
ith user parameter. The index j is a linear
index into the parameter elements. Indices
into multi-dimensional arrays must be cal-
culated using the information provided by
the ParamNumDims and ParamDim macros.
If the parameter is a string, this macro
will produce a runtime error or an access
violation if runtime checks are disabled.

ParamStringData(int i) char* R Returns a pointer to a UTF-8 encoded,
null-terminated C string that represents
the ith user parameter. If the parameter
is not a string, this macro will produce a
runtime error or returns NULL if runtime
checks are disabled.

SetErrorMessage(char *msg) void W Use this macro to report errors that occur
in your code. The simulation will be termi-
nated after the current simulation step. In
general, this macro should be followed by
a return statement. The pointer msg must
point to static memory.

212

C-Script Macros

C-Script Data Access Macros (contd.)

Macro Type Access Description

SetWarningMessage(char *msg) void W Use this macro to report warnings. The
warning status is reset as soon as the cur-
rent C-Script function returns, so you do
not need to reset it manually. The pointer
msg must point to static memory.

Note The values of the input and output signals are not stored in contiguous
memory. Therefore, signal values may only be accessed by using the macros, not
by pointer arithmetic. For example, trying to access the second output using the
following code will fail:

double *output = &OutputSignal(0, 0); // not recommended
output[1] = 1; // fails
*(output + 1) = 1; // fails
OutputSignal(0, 1) = 1; // ok

Deprecated Macros

The macros NumInputs, NumOutputs, Input(int i) and Output(int i) are
deprecated but are still supported for C-Scripts that only have a single input
and output terminal.

213

8 C-Scripts

214

9

State Machines

State machines are a formalism for event driven systems that move from
one discrete state to another in response to discrete events. PLECS lets you
graphically create and edit state machines using common concepts such as
boxes for states and curved arrows for transitions, and simulate them together
with a surrounding system. You can feed continuous or discrete signals into a
state machine e.g. to react to external events and output discrete signals from
a state machine e.g. as control signals. Actions are specified in the C program-
ming language and can be associated with states and transitions. Thanks to
their built-in timer events, state machines are equally useful for implementing
supervisory controls and complex modulators.

This chapter is subdivided into three sections. The first section describes how
you interact with the graphical editor to create and modify state machines.
The second section describes the semantics of a state diagram and how they
influence the execution of the state machine. The third section contains exam-
ples that highlight different features of the state machine.

9 State Machines

Working with State Machines

To create a new state machine, copy the State Machine block from the library
browser into your model. A double-click on the block opens a new window
with the state machine editor.

State machine editor window

Note The State Machine uses a distinct editor. You cannot copy block dia-
gram components to a state chart or state machine elements to a block diagram
schematic.

216

Working with State Machines

Working with States

A state is represented by a box with rounded corners. The name of the state is
displayed at the top of the box in a title bar with a gray background.

State

Enter:
/* enter action */

An empty state

To create a new state, click on the button in the tool bar. Move the mouse
anywhere on the chart and click the left mouse button to place the new state.
To cancel the operation, press the Escape key, click the right mouse button,
or click anywhere outside the editor window.

To duplicate an existing state, hold down the Ctrl key (cmd key on macOS),
then click on the title bar of the state and drag the mouse to a new location in
the same or a different editor window.

To change the size of a state, move the mouse over one of the four corners so
that the pointer shape becomes a diagonal arrow. Hold down the mouse but-
ton, drag the mouse until the dashed box has the desired size and release the
mouse button.

To change the name of a state, double-click on the name and edit it on the
chart. Valid state names must start with a letter and can contain only letters
and numbers. Whitespace, dashes or underscores are not allowed.

To edit the actions associated with the state, double-click on a free area within
the state. This will open a tabbed code editor, in which you can edit the En-
ter, During and Exit actions for the state. If there is enough space, the ac-
tion code is also displayed on the state. By double-clicking on the code, you
can edit it directly on the chart.

Hierarchical States

A state can contain other states. The containing state is called a super-state
or compound state, the contained state, a sub-state. A state that does not con-

217

9 State Machines

tain other states is called a leaf state. Compound states do not have a During
action.

To create hierarchical states, resize a state so that it is large enough to fully
surround another state, then move the other state into the first state.

SuperState

SubState

A super-state containing a sub-state

Note Overlapping states are forbidden and will produce an error message at
simulation start.

Working with Transitions

Transitions are represented by curved arrows from one state to another (or
also the same) state. To create a new transition, move the mouse over one
of the edges so that the pointer shape changes to crosshairs. Hold down the
mouse button, drag the mouse to another edge until the pointer shape changes
to double crosshairs and release the mouse button. If you release the mouse
button before the pointer shape has changed to double crosshairs, the opera-
tion is cancelled.

To change the start point or end point of an existing transition, move the
mouse pointer over either end until the pointer shape changes to an open
hand, then hold down the mouse button and drag the mouse to the new lo-
cation until the pointer shape changes to a double crosshair. If you release the
mouse button before the pointer shape has changed to double crosshairs, the
operation is cancelled and the transition remains unchanged.

Depending on its shape, a transition may have one or more control handles
that become visible when you hover the mouse over the transition. To change

218

Working with State Machines

the shape of the transition, hold down the mouse button over a control handle
and drag it to the desired location.

A double-click on a transition opens the Transition Editor. It allows you to
edit the Priority, Trigger, Condition and Action of the transition. The pri-
ority is also displayed at the origin of the transition arrow, and a double-click
lets you edit it directly on the chart. Trigger, condition and action combined
form the transition label in the form Trigger [Condition] / Action, which
is shown next to the transition arrow. To change the location of the label along
the transition, hold down the mouse button over the transition and drag it to
the desired location. By double-clicking on the label you can edit it directly on
the chart.

State1 State2

1

 Trigger [Condition] / Action

A transition with labels and control handle

Default Transitions

A default transition is represented by a curved arrow originating from a black
dot. It is required on the top level of a state machine to define which state
shall become active at the beginning of a simulation. If a compound state is
the direct target of any transitions, it also requires an internal default tran-
sition to define which of its sub-states shall become active when an incoming
transition is activated.

To create a new default transition, click on the button in the tool bar. Move
the mouse anywhere on the chart and click the left mouse button to place the
origin of the default transition (marked with a dot). Then, move the mouse
to draw the transition to an edge of the desired target state and click the left
mouse button again. To cancel the operation, press the Escape key, click the
right mouse button, or click anywhere on the chart that is not the edge of a
state.

219

9 State Machines

Working with Junctions

Junctions are branching points that join or fork transitions. They are repre-
sented by circles. Junctions are useful e.g. if the state that shall become active
at the beginning of a simulation depends on one or more conditions. To create
a new junction, click on the button in the tool bar.

State1 State2

1 [c] 2

A junction forking a default transition

Working with Annotations

Annotations are text blocks that you can place freely on a chart for documen-
tation purposes. They have no influence on the execution of the state machine.
To create a new annotation, double-click on an empty space in the chart and
start typing. To move an annotation, hold down the mouse button over the
annotation and drag it to the desired location. To edit an annotation, double-
click on it. Choose Text alignment from the Format menu to change the text
alignment of the annotation.

220

Working with State Machines

State Machine Configuration

To open the configuration editor, click on the button in the tool bar.

State machine configuration editor

Input Signals

On the Inputs tab you define input signals that are fed from the surrounding
system into the state machine. Input signals are specified by an Input vari-
able and a Type.
The Input variable specifies the name with which you refer to the input sig-
nal in actions or expressions. It is also displayed next to the corresponding
input terminal of the State Machine block. The variable name must be unique
and a valid C identifier, i.e. it must start with a letter and consist of only let-
ters, numbers and underscores.
The Type specifies whether the signal is a continuous signal or a trigger sig-
nal. For continuous and trigger signals, the actual signal value is assigned
to the input variable in every time step. For trigger signals, additionally an
event with the same name will be created when the input signal changes in
the prescribed way. A rising trigger event is created in the instant when the
input signal changes from zero to non-zero, a falling trigger event is created
in the instant when the input signal changes from non-zero to zero. For trig-
ger signals, a trigger symbol is also displayed next to the corresponding input
terminal of the State Machine block.

221

9 State Machines

Note Signal changes from one non-zero value to another non-zero value, e.g.
from a negative value to a positive value, do not cause an event to be created.

Input signals appear on the State Machine block in the order in which they
appear in the list. Use the four buttons to the left of the list to add or remove
inputs or to change their order.

Output Signals

On the Outputs tab you define output signals that are fed from the state ma-
chine to the surrounding system. Output signals are defined by an Output
variable that specifies the name with which you refer to the output signal in
actions. It is also displayed next to the corresponding output terminal on the
State Machine block. The variable name must be unique and a valid C iden-
tifier, i.e. it must start with a letter and consist of only letters, numbers and
underscores.

Output signals appear on the State Machine block in the order in which they
appear in the list. Use the four buttons to the left of the list to add or remove
outputs or to change their order.

Constants and Variables

On these tabs you define global variables that you can use in actions or ex-
pressions. They must have a unique and valid C identifier, i.e. they must start
with a letter and consist of only letters, numbers and underscores.

Constants remain constant during a simulation. The value is determined by
the Value expression, which can be any valid MATLAB or Octave expression
that evaluates to a scalar number.

Variables can be modified by actions. They are in fact additional discrete
state variables in addition to the active state of the state machine. Their ini-
tial value is determined by the Initial value expression, which can be any
valid MATLAB or Octave expression that evaluates to a scalar number.

222

Working with State Machines

C Declarations

The C declarations tab is used for global declarations and definitions. It is
also the place to include standard library headers and to define macros and
static helper functions that you want to use in actions and expressions.

In addition to the user defined variables and functions, the following pre-
defined macros can be used in actions:

Predefined Action Macros

Macro Type Access Description

CurrentTime double R Returns the current simulation time.

SetErrorMessage(char *msg) void W Use this macro to report errors that occur
in your code. The simulation will be termi-
nated after the current simulation step. In
general, this macro should be followed by
a return statement. The pointer msg must
point to static memory.

SetWarningMessage(char *msg) void W Use this macro to report warnings. The
warning status is reset after the execution
of the current simulation step, so you do
not need to reset it manually. The pointer
msg must point to static memory.

Note User defined variable or function names must not start with fsm_ or
FSM_ because these prefixes are reserved for internal symbols in the generated
code.

Hierarchical Transition Order

This option is only relevant for hierarchical state machines (see “Hierarchical
States” on page 217 and “Execution of Hierarchical State Machines” on page
228). When both a super-state and its sub-states have outgoing transitions

223

9 State Machines

that are eligible to be taken at the same time, this option determines whether
transitions from the super-state take precedence over transitions from the
sub-states or vice versa.

Sample Time

This parameter determines how the state machine is executed. The table be-
low lists the valid parameter values for the different sample time types. For a
detailed description of the sample time types see “Sample Time” (on page 36).

Type Value

Continuous [0, 0] or 0

Discrete-Periodic [Tp, To] or Tp Tp: Sample period, Tp > 0

To: Sample offset, 0 ≤ To < Tp

Inherited [-1, 0] or -1

With a Continuous sample time, the state machine is executed at every sim-
ulation step. With a Discrete-Periodic sample time, the state machine is exe-
cuted only at the regularly spaced simulation steps prescribed by the sample
time values. With an Inherited sample time, the actual sample time depends
on the blocks that are connected to the State Machine block.

Animation

This option is useful for debugging your state machine. When the option is
checked, the simulation is paused whenever a transition fires, and the tran-
sition path including the source and target state is highlighted. The simula-
tion can be continued by selecting Continue from the Simulation menu or
by pressing the Space key.

224

State Machine Execution

State Machine Execution

A state machine is executed at each simulation step that the solver makes if it
has a continuous sample time or at the specified time steps if it has a discrete
sample time (see also “Sample Time” on page 224). During each execution, the
following steps are performed:

1 The triggers and conditions of all transitions leaving the currently active
state are evaluated.

2 If a transition “fires”, i.e. if both trigger and condition are true, the State
Machine executes the Exit action of the current state followed by the tran-
sition action and the Enter action of the target state.

3 If no transition fires, the During action of the current state is executed.

During each execution, at most one state change can occur, i.e. at most one
transition can be taken. Note that a transition may include one or more junc-
tions (see “Compound Transitions” below).

Transition Evaluation

A transition from an active state can be taken when the specified trigger event
occurs, provided that the condition is true at the same time. Both trigger and
condition are optional. If a transition does not specify a trigger, any event (in-
cluding the mere execution of the state machine) will qualify so that the tran-
sition can be taken if the condition is true. If a transition does not specify a
condition, it can be taken when the trigger event occurs.

Transition Priorities

It is possible that multiple transitions from the current state are eligible to
be taken at the same time. In this case, the transition with the lower priority
number is given precedence.

Compound Transitions

A compound transition is a complete path from one leaf state to another (or
the same) leaf state consisting of two or more transitions joined by one or
more junctions. A compound transition can only be taken when all trigger
events specified by the individual transitions occur and all conditions specified

225

9 State Machines

by the individual transitions are true. If a compound transition is taken, the
actions of all individual transitions are executed in the order of the transitions
on the path.

Trigger Types

PLECS distinguishes between explicit, implicit and time-based triggers.

Explicit Trigger

An explicit trigger is an input signal that is configured as a trigger signal. It
is active whenever the input signal changes in the specified way. In the exam-
ple shown below, the event E is active whenever the signal connected to the
input terminal E changes from zero to a non-zero value or from a non-zero
value to zero. If State1 is active at this time, the transition fires.

State1 State2

1 E
E

State machine with explicit trigger

Note It is expected that the input signal for an explicit trigger changes only
at discrete instants. The signal source is responsible for registering an appro-
priate zero-crossing function to enable a variable-step solver to make a simula-
tion step at the instant at which the signal reaches or leaves zero.

Implicit Trigger

An implicit trigger is a relational expression. It is active when the expression
becomes true, i.e. if it evaluated to false in the previous time step and evalu-
ates to true in the current time step. If the state machine uses a continuous
sample time, an implicit trigger will also register a zero-crossing function to

226

State Machine Execution

enable the solver to make a simulation step at precisely the instant at which
the expression becomes true.

Notice the fundamental difference between an implicit trigger x > 0 and a
condition [x > 0] illustrated in the example below.

State1 State2

1 x>0

State1 State2

1 [x>0]

Implicit trigger (left) versus condition (right)

In the left chart, if State1 is active, the transition will be taken only when x
becomes greater than 0. However, if x is already greater than 0 when State1
becomes active, nothing will happen until x becomes less than or equal to 0
and afterwards greater than 0 again. If x is a continuous signal and the state
machine uses a continuous sample time, the state machine will be executed
precisely at the instant at which x crosses 0.

In the right chart, if State1 is active, the transition will be taken at any exe-
cution of the state machine if x happens to be greater than 0. If x is already
greater than 0 when State1 becomes active, the transition will be taken
during the next execution of the state machine. However, the execution of
the state machine does not necessarily coincide with the instant at which x
crosses 0.

Time-Based Trigger

A time-based trigger is an expression of the form AFTER(delay), where delay
is an expression that evaluates to a number. If the state machine uses a con-
tinuous sample time, the trigger event will be created exactly delay seconds
after the source state of the transition was entered. If the state machine uses
a discrete sample time, the trigger event will be created at the first execution
time following the delay period.

Trigger Lifetime

A trigger event is only valid in the simulation step in which it is created. If
no transition responds to the event in this time step, the event is ignored; it is
not deferred to a subsequent execution of the state machine.

227

9 State Machines

Execution of Hierarchical State Machines

In a hierarchical state machine it is not immediately obvious which transi-
tions are eligible to be taken, and which actions are executed when a transi-
tion is taken.

Transition Evaluation

Only leaf states, i.e. states that do not contain other states, can be the active
state. But compound states that directly or indirectly contain the active state
are also implicitly active. When the state machine searches for a transition to
be taken, it not only evaluates the transitions leaving the active leaf state but
also those that leave the implicitly active compound states.
In the case where both a transition from a super-state and a transition from a
sub-state are eligible to be taken, the option Hierarchical Transition Order
in the State Machine Configuration dialog determines whether the tran-
sition leaving the super-state is given precedence over the transition leaving
the sub-state (top to bottom) or vice versa (bottom to top). Note that in this
context leaf states are considered to be at the bottom of a state hierarchy.

Execution Sequence

The two states that are directly connected by a transition are designated the
main source and the main target of the transition. Notice that source state
and target state may both be compound states. The lowest compound state
that contains both source state and target state is designated the lowest com-
mon ancestor (LCA) state. When the transition is taken, the following actions
are executed in this order:

1 The Exit actions of all states from the active leaf state (which may be the
main source state or a sub-state of it) up to (but not including) the LCA
state are executed from bottom to top.

2 The transition action is executed.

3 The Enter actions of the state hierarchy inside the LCA state to the main
target state are executed from top to bottom.

4 If the main target is a compound state, the action of its local default tran-
sition is executed followed by the Enter action of the default transition’s
target state. If necessary, this process is repeated recursively until a leaf
state is reached.

228

State Machine Examples

This process is illustrated in the example below. Consider that S11 is the cur-
rently active state, so both S1 and S are also implicitly active.

S

S1

Exit:
S1_exit();

S11

Exit:
S11_exit();

S2

Enter:
S2_enter();

S21

Enter:
S21_enter(); / D_action();

1 T1 / T1_action();

1 T2 / T2_action();

Execution sequence in a hierarchical state machine

Transition T1 has S1 and S2 as its main source and target. Their LCA state
is S. S2 is a compound state, and therefore after it has been entered, its in-
ternal default transition causes S21 to be entered. Consequently, taking
T1 causes the following sequence of actions to be executed: S11_exit();
S1_exit(); T1_action(); S2_enter(); D_action(); S21_enter();.

Transition T2 has S11 and S21 as its main source and target. Their LCA
state is again S. Taking T2 causes the following sequence of actions to be exe-
cuted: S11_exit(); S1_exit(); T2_action(); S2_enter(); S21_enter();.

State Machine Examples

Oven Control

This example demonstrates a simple oven control. While the oven is in oper-
ation, a hysteresis type control shall keep the oven temperature within a cer-
tain tolerance band around a set point by switching the heating on and off. As
a safety measure, we also want to ensure that the heating is always switched
off when the oven door is open.

The oven is modeled with a heat source, a thermal capacitance and resistance
and a thermometer. The oven control is implemented with a state machine.
Its inputs are the actual and the desired temperature and the status of the
oven door, which is defined as 0 when the door is open and 1 when the door is
closed. The state machine output is the command for the oven heating. The

229

9 State Machines

ActT
SetT Heating

Oven Control

Door

Open

Closed

K100

Temperature
Set Point

DoorOpen DoorClosed

NoHeating

Heating

Enter:
Heating = 1;

Exit:
Heating = 0;

1 !Door

1 Door

1

 ActT<SetT-DeltaT

1

 ActT>SetT+DeltaT

1 [!Door] 2

2

1

 [ActT<SetT]

Example of a simple oven control

state machine uses a constant variable DeltaT that determines the limits of
the tolerance band around the desired temperature.

The top-level states DoorOpen and DoorClosed reflect the actual state of
the oven door. The default transition, which is taken at the first execution of
the state machine, is branched with a Junction. If the door is initially open
the (i.e. Door==0), DoorOpen state will be entered, else the DoorClosed
state. Notice that the unconditional “else” branch leaving the Junction has a
lower precedence than the conditional branch. Afterwards, the state machine
will transition from DoorOpen to DoorClosed when Door becomes non-zero
and vice versa when the input variable Door becomes zero.

DoorClosed is a compound state. Therefore, when it is the target of a transi-

230

State Machine Examples

tion, its internal default transition will be executed, which is also branched
with a Junction. If the actual temperature is below the set point when the
default transition executes, the Heating state will be entered, else the No-
Heating state. Afterwards, the state machine will transition from Heating
to NoHeating when the actual temperature becomes greater than the upper
limit and from NoHeating to Heating, when the actual temperature becomes
less than the lower limit.

The output variable Heating is set to 1 when the Heating state is entered,
and to 0 when the state is left. Notice that it does not matter whether the
state is left because the transition ActT>SetT+DeltaT is taken when the tem-
perature exceeds the upper limit, or because the transition !Door is taken
when the oven door is opened. In either case, the Exit action of Heating is
executed and the heating is turned off.

For this state machine to work properly, the Hierarchical Transition Or-
der must be set to top to bottom (which is the default). This is important
because a door opening event might coincide with the event that the actual
temperature exceeds the upper or lower limit. The higher-level door opening
event must take precedence over the lower-level temperature events so that
the state machine will unconditionally transition to the DoorOpen state.

Constant On-Time Control

This example demonstrates a constant on-time control for a buck converter.
The outer control loop computes a current reference from the difference be-
tween the actual output voltage and the voltage reference. The inner loop uses
a constant on-time control scheme as follows: When the actual current be-
comes less than the reference current, the FET shall be switched on for a fixed
duration. After the FET has been switched off, it must remain switched off for
a minimal duration before it can switch on again.

This scheme is implemented with a state machine that has the current error
Ierr as its input and the FET switching signal S as its output. The constant
on-time and the minimum off-time are configured as constant variables Ton
and Toff_min. The state machine has two states On and Off that are used to
switch the FET on and off, and a waiting state ReadyForOn.

When state On is entered, its Enter action will set the output signal S to 1.
Exactly Ton seconds after the entry of state On, the state machine is executed
again and the timer event AFTER(Ton) becomes active. This causes the state
machine to transition to state Off and the output signal S is set to 0. Ex-
actly Toff_min seconds after this event, the state machine is executed again,

231

9 State Machines

A

V

Vref

Voltage
Compensator

Verr Iref Ierr S

Constant
On-Time
Control

−+ −+

Off

Enter:
S = 0;

ReadyForOn

On

Enter:
S = 1;

1

 Ierr>0

1 AFTER(Ton)

1

 [Ierr>0]

1

 AFTER(Toff_min) 2

Example of a buck converter with constant on-time control

and the timer event AFTER(Toff_min) becomes active. The transition for this
timer event is branched with a Junction. If the input signal Ierr is already
greater than 0 at this instant, the state machine transitions directly to state
On again. Else, if Ierr is not greater than 0, the state machine transitions to
the waiting state ReadyForOn and remains there until Ierr becomes greater
than 0.

The default transition targets the same Junction so that the state machine
will start in the On state or the ReadyForOn state depending on whether
Ierr is greater than 0 at simulation start.

232

10

Simulation Scripts

Running simulations from a script allows you to examine the effect of varying
parameters or to post-process the simulation results to extract relevant infor-
mation.

In PLECS Blockset, scripts are written in the MATLAB environment.
Simulink offers a scripting interface to modify parameters and run simu-
lations from a script. A detailed description of the Simulink scripting op-
tions is out of the scope of this manual, please refer to the documentation for
Simulink instead. PLECS Blockset offers additional commands to control the
parameters of PLECS Circuits.

PLECS Standalone offers two different scripting methods:

• Scripts can be executed directly in PLECS Standalone. The scripts use a
syntax which is very similar to MATLAB.

• PLECS offers an XML-RPC interface that allows any other program that
can send XML-RPC requests to control PLECS. Many scripting languages
support XML-RPC out of the box, for example Python or Ruby. Other script-
ing language extensions for XML-RPC support are available for free on the
internet.

The scripting options for PLECS Standalone are described in section “Simula-
tion Scripts in PLECS Standalone” (on page 239).

Command Line Interface in PLECS Blockset

PLECS Blockset offers a Command Line Interface (CLI) to access component
and circuit parameters from scripts or directly from the MATLAB command
line. The command syntax is

plecs('cmd', 'parameter1', 'parameter2', ...)

10 Simulation Scripts

where cmd is one of the following commands: get, set, scope, thermal, export,
version, hostid.

Reading and Setting Parameters of Components

The command

plecs('get', 'componentPath')
plecs('get', 'componentPath', 'parameter')

returns the value of parameter of the PLECS component indicated by the com-
ponentPath as a string. If parameter is omitted a cell array with all available
parameters is returned.

plecs('set', 'componentPath', 'parameter', 'value')

sets the value of parameter of the PLECS component indicated by the compo-
nentPath to value.

The special parameter ’CurrentCircuit’ can be used to query the path to the
current PLECS Circuit. The component path has to be an empty string:

plecs('get', '', 'CurrentCircuit')

This command can only be used in the initialization commands of subsystems.

Handling of Errors and Warnings in Initialization Commands

During the execution of mask initialization commands, error messages issued
with the MATLAB command error are caught by PLECS and shown in the
Diagnostics window. To show a warning message in the Diagnostics window,
use the command

plecs('warning','warning message')

Note that the native MATLAB command warning will only print the warning
message to the MATLAB command window.

234

Command Line Interface in PLECS Blockset

Handling of Traces in Scopes

plecs('scope', 'scopePath', 'HoldTrace')
plecs('scope', 'scopePath', 'HoldTrace', 'traceName')

saves the values of the last simulation run to a new trace in the scope indi-
cated by the scopePath. If given and unique, traceName is used as the name
for the new trace, otherwise a default name is assigned. In both cases the
method returns the name given to the trace.

plecs('scope', 'scopePath', 'RemoveTrace', 'traceName')

removes the trace named traceName from the scope indicated by the
scopePath.

plecs('scope', 'scopePath', 'ClearTraces')

clears all traces in the scope indicated by the scopePath.

plecs('scope', 'scopePath', 'SaveTraces', 'fileName')

Saves the trace data of the scope at scopePath to the file fileName for later
reference. If fileName is not an absolute path, it is interpreted relative to the
model file that contains the scope.

plecs('scope', 'scopePath', 'LoadTraces', 'fileName')

Loads the trace data from the file fileName into the scope at scopePath. If file-
Name is not an absolute path, it is interpreted relative to the model file that
contains the scope.

Retrieving Scope Cursor Data

plecs('scope', 'scopePath', 'GetCursorData', [t1 t2])
plecs('scope', 'scopePath', 'GetCursorData', [t1 t2], ...

'analysis1', 'analysis2', ...)

235

10 Simulation Scripts

returns a struct with the signal values and analysis results (as specified) for
the cursor positions t1 and t2. Valid analysis names are delta, min, max,
absmax, mean, rms and thd. For more information about scope cursors see sec-
tion “Cursors” (on page 94).

The return value is a struct with the two fields time and cursorData. The
field time is the vector [t1, ts]. The field cursorData is a nested cell array
where the outer index corresponds to the number of plots in the scope and
the inner index corresponds to the number of signals in a plot. Each cell is a
struct with the fields cursor1 and cursor2 with the signal values and addi-
tional fields for the analyses that you have specified. If the scope has multiple
traces, the field values are vectors with one element for each trace.

So, if the return value is stored in data, to access the signal value at cursor 2
for the third trace of the second signal in the first plot, you write

data.cursorData{1}{2}.cursor2(3)

Exporting Scope Data

plecs('scope', 'scopePath', 'ExportCSV', 'fileName')
plecs('scope', 'scopePath', 'ExportCSV', 'fileName', [t1 t2])

saves all scope data or only the specified time range as comma separated val-
ues to the text file fileName. If fileName is not an absolute path, it is inter-
preted relative to the model file that contains the scope.

Exporting Scope Bitmaps

plecs('scope', 'scopePath', 'ExportBitmap', 'fileName')
plecs('scope', 'scopePath', 'ExportBitmap', 'fileName', ...)

saves a bitmap of the scope to the file fileName. If fileName is not an abso-
lute path, it is interpreted relative to the model file that contains the scope.
The file format is determined automatically from the file extension. The file-
Name argument may be followed by one or more name/value pairs to override
settings defined in the scope as described in table “Scope Settings for Bitmap
Export” (on page 244).

236

Command Line Interface in PLECS Blockset

Converting Thermal Descriptions

plecs('thermal', 'import', valVon, valEon, valEoff)
plecs('thermal', 'import', valVon, valEon, valEoff, ...

valCauer)

imports the on-state voltage drop valVon, the switching losses valEon, valEoff
and the cauer chain elements valCauer into the thermal editor. The parame-
ter valVon has to be a struct with two index vectors i, T and an output matrix
v. The parameters valEon and valEoff have to be structs with three index vec-
tors v, i, T and an output array E. The optional argument valCauer has to be
a struct with two array elements, C and R. The command can be used to im-
port thermal descriptions as used in PLECS 1.x into the thermal library of
PLECS 2.x and later.

plecs('thermal', 'export', 'filename')

reads the thermal data sheet from filename and returns a struct with the
fields Von, Eon, Eoff, CauerChain and Comment containing the respective data
from the thermal data sheet. The parameter filename has to be an absolute
filename to the data sheet including the .xml extension.

plecs('thermal', 'export', 'filename', 'modelName')

reads the thermal data sheet from filename and returns a struct with the
fields Von, Eon, Eoff, CauerChain and Comment containing the respective data
from the thermal data sheet. The parameter filename has to be a relative file-
name to the data sheet without the .xml extension.

Export for PLECS Viewer

plecs('export', 'modelName')
plecs('export', 'modelName', hideSchematics)
plecs('export', 'modelName', hideSchematics, 'filename')

exports the model modelName for the PLECS Viewer. By setting the optional
argument hideSchematics to true all PLECS circuits are marked as non-
viewable. If argument filename is given it is used as the exported model’s file-
name, otherwise you are prompted for a filename.

237

10 Simulation Scripts

Other CLI Commands

To retrieve the version information from PLECS as a string, enter

plecs('version')

To retrieve a struct with host ID and MATLAB license information, enter

plecs('hostid')

To check out a license for PLECS, enter

[success,message] = plecs('checkout')

If the check-out succeeds, the return variable success will be set to 1 and
message will be an empty string. Else, success will be set to 0 and message
will contain a detailed error message. When called without left-hand side
arguments, the command will raise a MATLAB error upon an unsuccessful
check-out and else execute silently.

Examples

Some examples for using the command line interface in PLECS Blockset:

plecs('get', 'mdl/Circuit1')

returns the parameters of Circuit1 in the simulink model mdl.

plecs('get', 'mdl/Circuit1', 'Name')

returns the name of Circuit1.

plecs('get', 'mdl/Circuit1', 'CircuitModel')

returns the circuit simulation method of Circuit1.

plecs('get', 'mdl/Circuit1/R1')

returns the parameters of component R1 in circuit Circuit1.

238

Simulation Scripts in PLECS Standalone

plecs('set', 'mdl/Circuit1/R1', 'R', '2')

sets the resistance of component R1 in circuit Circuit1 to 2.

plecs('export', 'mdl', true, 'exported.mdl')

exports the model mdl to the model file exported.mdl which can be opened
with the PLECS Viewer. The contents of all PLECS schematics are hidden.

data = plecs('thermal', 'export', 'Infineon/SDP04S60', ...
'plSMPS_CCM')

assigns the thermal description from library element Infineon/SDP04S60 in
model plSMPS_CCM to the variable data in the MATLAB workspace.

Simulation Scripts in PLECS Standalone

Simulation scripts are managed in the Simulation Scripts dialog shown below.
To open the dialog, select Simulation scripts... from the Simulation menu
of the schematic editor.

The left hand side of the dialog window shows a list of the scripts that are
currently configured for the model. To add a new script, click the button
marked + below the list. To remove the currently selected script, click on the
button marked -. You can reorder the scripts by clicking and dragging an en-
try up and down in the list.

239

10 Simulation Scripts

The right hand side of the dialog window shows the script in an editor win-
dow. Each script must have a unique Description.

The button Run/Stop starts the currently selected script or aborts the script
that is currently running.

To make changes to the script without running it, press the Accept button.
The Revert button takes back any changes that have been made after the Ac-
cept or Run button was pressed.

PLECS Standalone uses GNU Octave to execute simulation scripts. The
Octave language is very similar to MATLAB. A full syntax description of
the Octave scripting language is available in the Octave documentation,
http://www.gnu.org/software/octave/doc/interpreter/.

Any console output generated by Octave will appear in the Octave Console
window, which you can open by choosing Show Console from the Window
menu.

Overview of PLECS Scripting Extensions

In addition to generic Octave commands you can use the following commands
to control PLECS from within a simulation script.

Clearing the Octave Console

The command

plecs('clc')

clears the console window. Note that the native Octave commands clc and
home do not have any effect on the console window.

Reading and Setting Component Parameters

The command

plecs('get', 'componentPath')
plecs('get', 'componentPath', 'parameter')

returns the value of parameter of the PLECS component indicated by the com-
ponentPath as a string. If parameter is omitted a struct array with all avail-
able parameters is returned.

240

http://www.gnu.org/software/octave/doc/interpreter/index.html#Top
http://www.gnu.org/software/octave/doc/interpreter/index.html#Top

Simulation Scripts in PLECS Standalone

plecs('set', 'componentPath', 'parameter', 'value')

sets the value of parameter of the PLECS component indicated by the compo-
nentPath to value.

The special parameter ’CurrentComponent’ can be used to query the path of
the current component as defined above. The component path has to be an
empty string:

plecs('get', '', 'CurrentComponent')

The special parameter ’CurrentCircuit’ can be used to query the name of
the model that is currently executed. It cannot be queried interactively from
the console. The component path has to be an empty string:

plecs('get', '', 'CurrentCircuit')

This command is useful for constructing a component path that does not de-
pend on the model name.

A leading dot (.) in the component path is substituted with the current com-
ponent or model as described in “Path Substitution” (on page 245).

Handling of Errors and Warnings in Initialization Commands

During the execution of model or mask initialization commands, error mes-
sages issued with the Octave command error are caught by PLECS and
shown in the Diagnostics window. To show a warning message in the Diag-
nostics window, use the command

plecs('warning','warning message')

Note that the native Octave command warning will only print the warning
message to the Octave console.

Handling of Traces in Scopes

plecs('scope', 'scopePath', 'HoldTrace')
plecs('scope', 'scopePath', 'HoldTrace', 'traceName')

241

10 Simulation Scripts

saves the values of the last simulation to a new trace in the scope indicated
by the scopePath. If given and unique, traceName is used as the name for the
new trace, otherwise a default name is assigned. In both cases the method re-
turns the name given to the trace.

plecs('scope', 'scopePath', 'RemoveTrace', 'traceName')

removes the trace named traceName from the scope indicated by the
scopePath.

plecs('scope', 'scopePath', 'ClearTraces')

clears all traces in the scope indicated by the scopePath.

plecs('scope', 'scopePath', 'SaveTraces', 'fileName')

saves the trace data of the scope at scopePath to the file fileName for later ref-
erence. If fileName is not an absolute path, it is interpreted relative to the
model file that contains the scope.

plecs('scope', 'scopePath', 'LoadTraces', 'fileName')

loads the trace data from the file fileName into the scope at scopePath. If file-
Name is not an absolute path, it is interpreted relative to the model file that
contains the scope.

The scopePath is the path to the scope within the model including the model
name, e.g. ’DTC/Mechanical’. To access Bode plots from the analysis tools,
use the model name followed by ’/Analyses/’ followed by the name of the
analysis, e.g. ’BuckOpenLoop/Analyses/Control to Output TF (AC Sweep)’.
A leading dot (.) in the scope path is substituted with the current component
or model as described in “Path Substitution” below.

Retrieving Scope Cursor Data

plecs('scope', 'scopePath', 'GetCursorData', [t1 t2])
plecs('scope', 'scopePath', 'GetCursorData', [t1 t2], ...

'analysis1', 'analysis2', ...)

242

Simulation Scripts in PLECS Standalone

returns a struct with the signal values and analysis results (as specified) for
the cursor positions t1 and t2. Valid analysis names are delta, min, max,
absmax, mean, rms and thd. For more information about scope cursors see sec-
tion “Cursors” (on page 94).

The return value is a struct with the two fields time and cursorData. The
field time is the vector [t1, ts]. The field cursorData is a nested cell array
where the outer index corresponds to the number of plots in the scope and
the inner index corresponds to the number of signals in a plot. Each cell is a
struct with the fields cursor1 and cursor2 with the signal values and addi-
tional fields for the analyses that you have specified. If the scope has multiple
traces, the field values are vectors with one element for each trace.

So, if the return value is stored in data, to access the signal value at cursor 2
for the third trace of the second signal in the first plot, you write

data.cursorData{1}{2}.cursor2(3)

Exporting Scope Data

plecs('scope', 'scopePath', 'ExportCSV', 'fileName')
plecs('scope', 'scopePath', 'ExportCSV', 'fileName', [t1 t2])

saves all scope data or only the specified time range as comma separated val-
ues to the text file fileName. If fileName is not an absolute path, it is inter-
preted relative to the model file that contains the scope.

Exporting Scope Bitmaps

plecs('scope', 'scopePath', 'ExportBitmap', 'fileName')
plecs('scope', 'scopePath', 'ExportBitmap', 'fileName', ...)

saves a bitmap of the scope to the file fileName. If fileName is not an absolute
path, it is interpreted relative to the model file that contains the scope. The
file format is determined automatically from the file extension. The fileName
argument may be followed by one or more name/value pairs to override set-
tings defined in the scope as follows:

243

10 Simulation Scripts

Scope Settings for Bitmap Export

Name Description

Size A two-element integer vector specifying the width and
height of the bitmap in pixels.

Resolution An integer specifying the resolution of the bitmap in
pixels per inch.

TimeRange A two-element real vector specifying the time range of
the data to be shown.

XLim A two-element real vector specifying the limits of
the x-axis. For a normal scope this is equivalent to
TimeRange.

YLim A cell array containing two-element real vectors speci-
fying the limits of the y-axis of the plot(s). For a scope
with a single plot a vector may be given directly.

XLabel A string specifying the x-axis label.

YLabel A cell array containing strings specifying the y-axis
labels of the plot(s). For a scope with a single plot a
string may be given directly.

Title A cell array containing strings specifying the title of
the plot(s). For a scope with a single plot a string may
be given directly.

LegendPosition A string specifying the legend position. Possible values
are none, topleft, topmiddle, topright, bottomleft,
bottommiddle and bottomright.

Font A string specifying the font name to be used for the
labels and the legend.

LabelFontSize An integer specifying the label font size in points.

LegendFontSize An integer specifying the legend font size in points.

244

Simulation Scripts in PLECS Standalone

Path Substitution

If a component or scope path is a simple dot (.) or starts with a dot followed
by a slash (./) the dot is substituted with the current component.

When a command is executed interactively from the console, the current com-
ponent is the last component that was clicked on in the schematic editor; if
the last click was not on a component, the current component is undefined.

During the evaluation of block parameters or mask initialization commands
the current component is the component that is currently evaluated; during
the evaluation of the model initialization commands it is the model itself.

Starting a Simulation

plecs('simulate')
plecs('simulate', optStruct)

starts a simulation. The optional argument optStruct can be used to override
model parameters; for detailed information see section “Scripted Simulation
and Analysis Options” (on page 251).

If any outports exist on the top level of the simulated model, the command re-
turns a struct consisting of two fields, Time and Values. Time is a vector that
contains the simulation time for each simulation step. The rows of the array
Values consist of the signal values at the outports. The order of the signals is
determined by the port numbers.

Starting an Analysis

plecs('analyze', 'analysisName')
plecs('analyze', 'analysisName', optStruct)

starts the analysis defined in the Analysis Tools dialog under the name anal-
ysisName. The optional argument optStruct can be used to override model pa-
rameters; for detailed information see section “Scripted Simulation and Analy-
sis Options” (on page 251).

For a Steady-State Analysis, if any outports exist on the top level of the sim-
ulated model, the command returns a struct consisting of two fields, Time and
Values as described above. The signal values at the outports are captured af-
ter a steady-state operating point has been obtained.

245

10 Simulation Scripts

For an AC Sweep, an Impulse Response Analysis or a Multitone Analysis, the
command returns a struct consisting of three fields, F, Gr and Gi. F is a vector
that contains the perturbation frequencies of the analysis. The rows of the ar-
rays Gr and Gi consist of the real and imaginary part of the transfer function
as defined in the analysis. If the command is called without a return value, a
scope window will open and display the Bode diagram of the transfer function.

Example Script

The following script runs a parameter sweep by setting the variable varL
to the values in inductorValues. It is used in the demo model BuckParam-
Sweep.

mdlVars = struct('varL', 50e-6);
opts = struct('ModelVars', mdlVars);

plecs('scope', './Scope', 'ClearTraces');

inductorValues = [50, 100, 200];
for ix = 1:length(inductorValues)
opts.ModelVars.varL=inductorValues(ix) * 1e-6;
out = plecs('simulate', opts);
plecs('scope', './Scope', 'HoldTrace', ...

['L=' mat2str(inductorValues(ix)) 'uH']);
[maxv, maxidx] = max(out.Values(1,:));
printf('Max current for L=%duH: %f at %fs\n', ...

inductorValues(ix), maxv, out.Time(maxidx));
end

The first two lines create a struct ModelVars with one field, varL. The struct is
embedded into another struct named opts, which will be used later to initial-
ize the simulation parameters.

Inside the for-loop each value of inductorValues is assigned successively to
the structure member variable varL. A new simulation is started, the result is
saved in variable out for post-processing. By holding the trace in the scope the
scope output will remain visible when a new simulation is started; the scope
path uses a dot to reference the current model (see “Path Substitution” on
page 245). The name of the trace is the inductance value.

The script then searches for the peak current in the simulation results and
outputs the value and the time, at which it occurred, in the Octave Console.

246

XML-RPC Interface in PLECS Standalone

XML-RPC Interface in PLECS Standalone

The XML-RPC interface allows you to control PLECS Standalone from an ex-
ternal program. PLECS acts as an XML-RPC server which processes requests
from an XML-RPC client.

XML-RPC is a lightweight protocol that is supported by numerous scripting
languages. For the following description, Python 2.x syntax and script ex-
cerpts are used.

Establishing an XML-RPC Connection to PLECS

The XML-RPC interface in PLECS is disabled by default. It must be enabled
in the PLECS preferences before a connection can be established. The TCP
port to use can also be configured in the PLECS preferences.

The following Python code initiates an XML-RPC connection to PLECS:

import xmlrpclib
server = xmlrpclib.Server("http://localhost:1080/RPC2")

The code assumes that PLECS is configured to use TCP port 1080 for XML-
RPC. Note that the URL must end with "/RPC2", which is an XML-RPC con-
vention.

Note XML-RPC connections to PLECS are only allowed from clients running
on the same machine as PLECS. Therefore, the connection should always be
initiated using localhost in the server URL.

Overview of XML-RPC Commands

Commands for PLECS start with plecs followed by a dot. In Python they are
invoked on the server object, for example

server.plecs.load("myModel.plecs")

247

10 Simulation Scripts

Opening and Closing a Model

The command

plecs.load('mdlFileName')

opens the model with the given mdlFileName. The filename should contain
the absolute path to the file.

The command

plecs.close('mdlName')

closes the model with the given name. The model will be closed uncondition-
ally without being saved, even when changes have been made.

Reading and Setting Component Parameters

The command

plecs.get('componentPath')
plecs.get('componentPath', 'parameter')

returns the value of parameter of the PLECS component indicated by the com-
ponentPath as a string. If parameter is omitted a struct array with all avail-
able parameters is returned.

plecs.set('componentPath', 'parameter', 'value')

sets the value of parameter of the PLECS component indicated by the compo-
nentPath to value.

Handling of Traces in Scopes

plecs.scope('scopePath', 'HoldTrace')
plecs.scope('scopePath', 'HoldTrace', 'traceName')

saves the values of the last simulation to a new trace in the scope indicated
by the scopePath. If given, traceName is used as the name for the new trace,
otherwise a default name is assigned.

248

XML-RPC Interface in PLECS Standalone

plecs.scope('scopePath', 'RemoveTrace', 'traceName')

removes the trace named traceName from the scope indicated by the
scopePath.

plecs.scope('scopePath', 'ClearTraces')

clears all traces in the scope indicated by the scopePath.

plecs.scope('scopePath', 'SaveTraces', 'fileName')

Saves the trace data of the scope at scopePath to the file fileName for later
reference. If fileName is not an absolute path, it is interpreted relative to the
model file that contains the scope.

plecs.scope('scopePath', 'LoadTraces', 'fileName')

Loads the trace data from the file fileName into the scope at scopePath. If file-
Name is not an absolute path, it is interpreted relative to the model file that
contains the scope.

The scopePath is the path to the scope within the model including the model
name, e.g. ’DTC/Mechanical’. To access Bode plots from the analysis tools,
use the model name followed by ’/Analyses/’ followed by the name of the
analysis, e.g. ’BuckOpenLoop/Analyses/Control to Output TF (AC Sweep)’.

Starting a Simulation

The command

plecs.simulate('mdlName')
plecs.simulate('mdlName', optStruct)

starts a simulation of the model named mdlName. The optional argument opt-
Struct can be used to override model parameters; for detailed information see
section “Scripted Simulation and Analysis Options” (on page 251).

If any outports exist on the top level of the simulated model, the command re-
turns a struct consisting of two fields, Time and Values. Time is a vector that
contains the simulation time for each simulation step. The rows of the array
Values consist of the signal values at the outports. The order of the signals is
determined by the port numbers.

249

10 Simulation Scripts

Starting an Analysis

The command

plecs.analyze('mdlName', 'analysisName')
plecs.analyze('mdlName', 'analysisName', optStruct)

starts the analysis named analysisName in the model named mdlName. The
optional argument optStruct can be used to override model parameters; for
detailed information see section “Scripted Simulation and Analysis Options”
(on page 251).
For a Steady-State Analysis, if any outports exist on the top level of the sim-
ulated model, the command returns a struct consisting of two fields, Time and
Values as described above. The signal values at the outports are captured af-
ter a steady-state operating point has been obtained.
For an AC Sweep or an Impulse Response Analysis, the command returns a
struct consisting of three fields, F, Gr and Gi. F is a vector that contains the
perturbation frequencies of the analysis. The rows of the arrays Gr and Gi
consist of the real and imaginary part of the transfer function as defined in
the analysis.

Example Script

The following Python script establishes an XML-RPC connection, loads a
model and simulates it twice. The scope output from each simulation is pre-
served by holding the traces in the scope.

import xmlrpclib
server = xmlrpclib.Server("http://localhost:1080/RPC2")

server.plecs.load("C:/Models/BuckParamSweep.plecs")
server.plecs.scope('BuckParamSweep/Scope', 'ClearTraces')

opts = {'ModelVars' : { 'varL' : 50e-6 } }
result = server.plecs.simulate("BuckParamSweep", opts)
server.plecs.scope('BuckParamSweep/Scope',

'HoldTrace', 'L=50uH')

opts['ModelVars']['varL'] = 100e-6;
result = server.plecs.simulate("BuckParamSweep", opts)
server.plecs.scope('BuckParamSweep/Scope',

'HoldTrace', 'L=100uH')

250

Scripted Simulation and Analysis Options

Scripted Simulation and Analysis Options

When you start a simulation or analysis from a Simulation Script or via XML-
RPC, you can pass an optional argument optStruct in order to override param-
eter settings defined in the model. This enables you to run simulations for dif-
ferent scenarios without having to modify the model file.

The argument optStruct is a struct that may contain the fields ModelVars,
SolverOpts and – when starting an analysis – AnalysisOpts, which are again
structs as described below.

ModelVars The optional field ModelVars is a struct variable that allows
you to override variable values defined by the model initialization commands.
Each field name is treated as a variable name; the field value is assigned to
the corresponding variable. Values can be numerical scalars, vectors, matrices
or 3d arrays or strings.

The override values are applied after the model initialization commands have
been evaluated and before the component parameters are evaluated as shown
in the figure below.

SolverOpts The optional field SolverOpts is a struct variable that allows
you to override the solver settings specified in the Simulation Parameters dia-
log. Each field name is treated as a solver parameter name; the field value is
assigned to the corresponding solver parameter. The following table lists the
possible parameters.

Solver Options in Scripted Simulations

Parameter Description

Solver The solver to use for the simulation. Possible values are
dopri for a non-stiff variable step solver, radau for a stiff
variable step solver and discrete for a fixed step solver.
See section “Standalone Parameters” (on page 107) for more
details.

StartTime The start time specifies the initial value of the simulation
time variable t at the beginning of a simulation, in seconds.

StopTime The simulation ends when the simulation time has advanced
to the specified stop time.

251

10 Simulation Scripts

Solver Options in Scripted Simulations (contd.)

Parameter Description

Timeout A non-negative number that specifies the maximum number
of seconds (wall-clock time) that a simulation or analysis is
allowed to run. After this period the simulation or analysis
is stopped with a timeout error. A value of 0 disables the
timeout.

MaxStep See parameter Max Step Size in section “Standalone Pa-
rameters” (on page 107). This parameter is only evaluated
for variable step solvers.

InitStep See parameter Initial Step Size in section “Standalone Pa-
rameters” (on page 107). This parameter is only evaluated
for variable step solvers.

FixedStep This parameter specifies the fixed time increments for the
solver and also the sample time used for the state-space dis-
cretization of the physical model. It is only evaluated for the
fixed step solver.

AbsTol See the description for Tolerances in section “Standalone
Parameters” (on page 107).

RelTol See the description for Tolerances in section “Standalone
Parameters” (on page 107).

Refine See parameter Refine factor in section “Standalone Param-
eters” (on page 107).

AnalysisOpts For an analysis the optional field AnalysisOpts is a struct
variable that allows you to override the analysis settings defined in the Anal-
ysis Tools dialog. Each field name is treated as an analysis parameter name,
the field value is assigned to the corresponding analysis parameter. The fol-
lowing tables list the possible parameters

252

Scripted Simulation and Analysis Options

Script
start

Model
initialization
commands

Component
parameter
evaluation

ModelVars
evaluation

End

Script
execution

Model
simulation

plecs('simulate')
plecs('analyze')

Start

Model
initialization
commands

Component
parameter
evaluation

ModelVars
evaluation

End

XML-RPC
client

process

Model
simulation

plecs.simulate()
plecs.analyze()

Execution order for Simulation Scripts (left) and XML-RPC (right)

Analysis Options in Scripted Analyses

Parameter Description

TimeSpan System period length; this is the least common
multiple of the periods of independent sources
in the system.

StartTime Simulation start time.

Tolerance Relative error tolerance used in the conver-
gence criterion of a steady-state analysis.

MaxIter Maximum number of iterations allowed in a
steady-state analysis.

253

10 Simulation Scripts

Analysis Options in Scripted Analyses (contd.)

Parameter Description

JacobianPerturbation Relative perturbation of the state variables
used to calculate the approximate Jacobian
matrix.

JacobianCalculation Controls the way the Jacobian matrix is calcu-
lated (full, fast). The default is fast.

InitCycles Number of cycle-by-cycle simulations that
should be performed before the actual analysis.
This parameter can be used to provide the ini-
tial steady-state analysis with a better starting
point.

ShowCycles Number of steady-state cycles that should be
simulated at the end of an analysis. This pa-
rameter is evaluated only for a steady-state
analysis.

FrequencyRange Range of the perturbation frequencies. This
parameter is evaluated only for a small-signal
analysis.

FrequencyScale Specifies whether the sweep frequen-
cies should be distributed on a linear or
logarithmic scale. This parameter is eval-
uated only for a small-signal analysis.

AdditionalFreqs A vector specifying frequencies to be swept in
addition to the automatically distributed fre-
quencies. This parameter is evaluated only for
a small-signal analysis.

NumPoints The number of automatically distributed per-
turbation frequencies. This parameter is evalu-
ated only for a small-signal analysis.

254

Scripted Simulation and Analysis Options

Analysis Options in Scripted Analyses (contd.)

Parameter Description

Perturbation The full block path (excluding the model name)
of the Small Signal Perturbation block that
will be active during an analysis. This pa-
rameter is evaluated only for a small-signal
analysis.

Response The full block path (excluding the model name)
of the Small Signal Response block that will
record the system response during an anal-
ysis. This parameter is evaluated only for a
small-signal analysis.

AmplitudeRange The amplitude range of the sinusoidal pertur-
bation signals for an ac sweep. This parameter
is evaluated only for an ac sweep.

Amplitude The amplitude of the discrete pulse pertur-
bation for an impulse response analysis. This
parameter is evaluated only for an impulse
response analysis.

ShowResults Specifies whether to show a Bode plot after
a small-signal analysis. This parameter is
evaluated only for a small-signal analysis.

255

10 Simulation Scripts

256

11

Code Generation

As a separately licensed feature, PLECS can generate C code from a simu-
lation model to facilitate real-time simulations. Code generation is subject
to certain limitations, which are described in the first section of this chapter.
The next two sections describe how the code generation capabilities are used
within PLECS Standalone and PLECS Blockset, respectively.

Code Generation for Physical Systems

As described earlier in this manual, PLECS models physical systems using
piecewise linear state-space equations that can be described using multiple
sets of state-space matrices. For details see “Physical Model Equations” (on
page 28).

During normal simulations, PLECS calculates new sets of state-space ma-
trices on the fly as the individual switching components change their states.
This is not possible in the generated C code because the algorithms for calcu-
lating the matrices are proprietary and because the calculation would simply
be too time consuming under real-time constraints.

When generating code for a physical model, PLECS therefore embeds the ma-
trices for all combinations of switch states that it expects to encounter dur-
ing the execution of a simulation run. In general this means that for a system
with n switch elements 2n sets of state-space matrices are calculated and em-
bedded into the generated C code. The actual number can be reduced by elimi-
nating impossible combinations. For instance, the Triple Switch (see page 691)
blocks internally consists of 3 switch elements but it still only accounts for 3
instead of 23 combinations because one and only one switch will conduct at
any time. Even so, systems with many switches will lead to large source and
executable files and long compile times.

11 Code Generation

Reducing the Code Size

You can reduce the size of the generated code and the required compile time
by specifying the combinations for which code should be generated. The com-
binations are specified using special Model Settings blocks that are connected
to individual physical models, see Electrical Model Settings on page 389, Ro-
tational Model Settings on page 552 and Translational Model Settings on page
672.

If at run-time a combination is encountered, for which no code has been gener-
ated, the execution is aborted with an error message.

Maximum Number of Switches

The number of switch elements is limited to 16 or 32 per physical domain de-
pending on the integer word size. This is due to the fact that the switch states
of a physical domain are stored internally in a single unsigned integer vari-
able. Note that some components, such as the Triple Switch (see page 691),
internally consist of more than one switch element.

Handling Naturally Commutated Devices

Switched physical models are difficult to handle in real-time simulations if the
natural switching instants can occur between two time steps. This is the case
for naturally commutated components where switching events are triggered
by internal quantities of the physical model. Examples of such components
are the diode (which turns on when the voltage becomes positive and turns
off when the current becomes negative) or the mechanical friction components
(which start slipping when the torque resp. force exceeds a certain level and
become stuck when the speed becomes zero).

During normal simulations, PLECS handles such non-sampled switching
events using an interpolation scheme (see “Interpolation of Non-Sampled
Switching Events” on page 34). This is not practical under real-time con-
straints because the computation time required for the interpolation is several
times larger than that of an ordinary simulation step. In real-time simula-
tions, PLECS will therefore defer the switching to the immediately following
time step. Note that this reduces the accuracy compared to a normal simula-
tion.

258

Code Generation for Physical Systems

Switching Algorithm

A further difficulty with naturally commutated devices is that their conduc-
tion state is usually influenced by the conduction states of other switches.
During normal simulations, PLECS solves this problem by iteratively toggling
the conduction states of naturally commutated switches within one simula-
tion step until the boundary conditions of all switches are satisfied (see the
description of the Switch Manager in section “Physical Model Equations” on
page 28).

When generating code for a physical model, PLECS lets you choose between
two switching algorithms, Iterative and Direct Look-up. You can specify the
algorithm individually for each physical model using special Model Settings
blocks that are connected to individual physical models, see Electrical Model
Settings on page 389, Rotational Model Settings on page 552 and Transla-
tional Model Settings on page 672. The default switching algorithm is Direct
Look-up.

Iterative PLECS generates code that implements an iterative switching
method as described above. As a consequence of the iteration, simulation
steps, in which a switching occurs, require more computation time than simu-
lation steps without switching events. This is usually undesirable in real-time
simulations because the longest execution time determines the feasible sample
rate.

Direct Look-up Alternatively, PLECS can generate code that determines the
proper switch conduction states directly as functions of the current physical
model states and inputs and the gate signals of externally controlled switches.
In order to generate these direct look-up functions, PLECS must analyze all
possible transitions between all possible combinations of conduction states.
This increases the computation time of the code generation process but yields
nearly uniform execution times of simulation steps with or without switching
events.

In order to reduce the number of possible combinations of switch conduction
states and thus the code generation time and the code size, PLECS introduces
the condition that naturally commutated devices (e.g. diodes or IGBTs) can
only conduct if their current is non-zero. As a consequence, a diode may block
even though the voltage is forward-biased if there is another blocking switch
connected in series that prevents the current from flowing through the diode.
This can produce unexpected voltage waveforms even though otherwise the
model behaves correctly.

259

11 Code Generation

Consider the simple circuit shown below. Two diodes are connected in series
but opposing each other so that no current can flow regardless of the polarity
of the source voltage:

0

D
1

vo
lta

ge

0

D
2

vo
lta

ge
Simulation of a circuit with two opposing diodes

In the two graphs, the bold lines show the results from a normal simulation.
When the source voltage is positive, D1 conducts and D2 blocks, and hence the
voltage across D1 is zero and the voltage across D2 equals the negative source
voltage. As the source voltage becomes negative, D1 block and D2 conducts,
and accordingly the voltage across D1 equals the source voltage and the volt-
age across D2 is zero.

The dotted stairstep lines show the results from generated code using the it-
erative switching method. As can be seen, the diodes behave in the same way
as in the normal simulation. In the generated code using the direct look-up
method shown with continuous stairstep lines, however, both diodes block at
all times because no current can ever flow through either of them. Accord-
ingly, the source voltage always divides evenly across the two diodes.

260

Data Types

Data Types

During normal offline simulations, PLECS uses double precision floating-point
numbers as the sole data type for all signal connections. However, when you
generate code, you can use other data types to increase the efficiency of the
generated code.

The following table lists the data types supported by the PLECS Coder.

Data Types

Name Description

bool Boolean

uint8_t Unsigned 8-bit integer

int8_t Signed 8-bit integer

uint16_t Unsigned 16-bit integer

int16_t Signed 16-bit integer

uint32_t Unsigned 32-bit integer

int32_t Signed 32-bit integer

float Single-precision floating point

double Double-precision floating point

Certain blocks have an implicit output data type other than floating
point:

• Comparator (see page 344), bool
• Edge Detection (see page 384), bool
• Hit Crossing (see page 407), bool
• Logical Operator (see page 474), bool
• Monoflop (see page 491), bool
• Relational Operator (see page 540), bool
• Sign (see page 586), int32_t

Other blocks let you specify the data type of their output signals:

• Constant (see page 347)

261

11 Code Generation

• Data Type (see page 356)
• Enable (see page 392)
• Gain (see page 399)
• Offset (see page 511)
• Product (see page 530)
• Pulse Generator (see page 533)
• Relay (see page 541)
• Signal Input (see page 580)
• Step (see page 602)
• Sum (see page 606)
• Rounding (see page 558)

A third group of blocks inherits the data type from the input signals.

• Delay (see page 360)
• Initial Condition (see page 463)
• Memory (see page 485)
• Minimum / Maximum (see page 487)
• Signal Switch (see page 585)
• Zero Order Hold (see page 725)

The other blocks use the default floating point data type. In the PLECS Stan-
dalone Coder, the default floating point data type can be specified in the
Coder Options dialog (see “Generating Code” on page 264). In the PLECS
Blockset Coder, the default floating point data type is double.

262

Unsupported Components

Unsupported Components

PLECS currently does not support code generation for the following compo-
nents:

• Algebraic Constraint (see page 315)
• Brushless DC Machine (see page 330)
• Electrical Algebraic Component (see page 385)
• Non-Excited Synchronous Machine (see page 507)
• Rotational Algebraic Component (see page 543)
• Switched Reluctance Machine (see page 608)
• Synchronous Reluctance Machine (see page 627)
• Translational Algebraic Component (see page 663)
• Variable Capacitor (see page 695)
• Variable Inductor (see page 698)
• Variable Resistor (see page 704)
• Variable Resistor with Constant Parallel Capacitor (see page 705)
• Variable Resistor with Constant Series Inductor (see page 706)
• Variable Resistor with Variable Parallel Capacitor (see page 707)
• Variable Resistor with Variable Series Inductor (see page 709)

PLECS also does not support code generation for models that contain alge-
braic loops.

263

11 Code Generation

Code Generation with PLECS Standalone

PLECS Standalone produces C code in an embedded format, generating en-
try point functions that must be called from a main application. The following
functions are generated:

void model_initialize(double time)
This function should be called once at the beginning of a simulation to ini-
tialize the internal data structures and the start value of the global clock
for components that depend on the absolute time.

void model_step()
This function should be called at every simulation step to advance the
model by one step.

void model_terminate()
This function should be called at the end of a simulation to release re-
sources that were acquired at the beginning of or during a simulation.

The prefix model is replaced by a model-specific string.

If a runtime error occurs during the execution of any of the three functions
above, the variable const char * model_errorStatus points to a string with
the error message. It is initialized with NULL.

Generating Code

To generate code, choose Coder options... from the Coder menu. This menu
only appears if you have a license for the PLECS Coder.

The left hand side of the dialog window shows a tree view of the model and
the code-generation subsystem that it contains. Intermediate subsystems that
have not been enabled for code generation appear as disabled entries that can-
not be selected.

To enable the model itself for code generation, choose the Fixed-Step Dis-
crete solver in the simulation parameters of PLECS Standalone (or choose
the Discrete state-space circuit model in the simulation parameters of
PLECS Blockset).

To enable a subsystem for code generation, select the subsystem, then choose
Execution settings... from the Subsystem submenu of the Edit menu or
the context menu. In the Subsystem Settings dialog check the option En-
able code generation. This option is only shown if you have a license for the
PLECS Coder. Checking this option implicitly also checks the option Treat as

264

Code Generation with PLECS Standalone

atomic unit and unchecks the option Minimize occurrence of algebraic
loops. For more information on these options see “Virtual and Atomic Subsys-
tems” (on page 603).
The right hand side of the dialog window shows a tabbed dialog with the code
generation options for the system that is selected in the tree view. To generate
code for the currently selected system, click on the Build button at the bottom
of the right hand side.
Code generation can also be initiated in an Octave simulation script or via the
XML-RPC interface using the commands

plecs('codegen', 'path', optStruct, 'outputDir')

or

plecs.codegen('path', optStruct, 'outputDir')

respectively, where path is a model name or a subsystem path. The parame-
ters optStruct and outputDir are optional.

265

11 Code Generation

If optStruct is provided, it is expected to be a struct as described in “Scripted
Simulation and Analysis Options” (on page 251). This enables you e.g. to gen-
erate code for different parameter values without having to modify the model
file.

If outputDir is provided, the generated files will be placed in this folder in-
stead of the folder that is specified in the model.

General

Discretization step size This parameter specifies the base sample time of
the generated code and is used to discretize the physical model equations (see
“Physical Model Discretization” on page 33).

Discretization method This parameter specifies the algorithm used to dis-
cretize the physical model equations (see “Physical Model Discretization” on
page 33) and continuous state variables of control blocks.

Floating point format This parameter specifies the default data type
(float or double) that is used for floating point variables in the generated
code.

Usage of absolute time This setting allows you to specify the diagnostic
action to be taken if PLECS generates code for a component that depends on
the absolute time. In order to minimize round-off errors, PLECS generates
code to calculate the absolute time using a signed 64-bit integer tick counter.
If a simulation runs for an infinite time, this tick counter will eventually
reach its maximum value, where it is halted to avoid problems that might oc-
cur if the counter was wrapped to the (negative) minimum value, such as a
Step block (see page 602) resetting to its initial value. To put things into per-
spective, assuming a step size of 1µs this would occur after 292 271 years.

Depending on this setting, PLECS will either ignore this condition or it will
issue a warning or error message that indicates the components that use the
absolute time.

Base name This parameter allows you to specify a custom prefix used to
name the generated files and the exported symbols such as the interface func-
tions or the input, output and parameter structs. By default, i.e. if you clear
this field, the base name is derived from the model or subsystem name.

Output directory This parameter allows you to specify, where the generated
files are stored. This can be an absolute path or a relative path with respect
to the location of the model file. The default path is a directory model_codegen
next to the model file.

266

Code Generation with PLECS Standalone

Parameter Inlining

These two settings specify how PLECS handles tunable parameters in the
generated code.

Default behavior This setting specifies whether PLECS inlines the param-
eter values as numeric constants directly into the code (Inline parameter
values) or generates a data structure from which the values are read (Keep
parameters tunable).

Inlining parameter values reduces the code size and increases the execution
speed. However, changing an inlined parameter value requires regenerating
and recompiling the code. On the other hand, the values of tunable parame-
ters can be changed at execution time without recompiling the code.

Exceptions For the components listed here, the opposite of the default be-
havior applies. If the default behavior is to inline all parameter values, the
components listed here will keep their parameters tunable and vice versa. To
add components to this list, simply drag them from the schematic into the list.
Use the Remove button to remove components from the list. To view the
selected component in the schematic editor, click the Show component
button.

Note Physical component parameters that affect the physical model equa-
tions, such as resistances or inductances, cannot be kept tunable, because
changing such parameters in general requires a recalculation of the complete
equation system. You can, however, keep the parameters of source blocks tun-
able.

Target

On this tab you can select a code generation target and configure target-
specific settings. By default, only the Generic target is available, which does
not have any specific settings. For information on how to install additional
code generation targets, see “Coder Configuration” (on page 44).

267

11 Code Generation

External Mode

This tab is only enabled if you have selected a target that supports external
mode operation and if the corresponding target setting is enabled. External
mode operation enables you to

• Capture data on a target device and show them in Scope (see page 573), XY
Plot (see page 722) and Display (see page 378) blocks in the model on the
host computer.

• Change values of tunable parameters (see “Parameter Inlining” (on page
267)) in the model on the host computer and upload the changed values to
an application running on a target device.

Simulating a Subsystem in CodeGen Mode

Enabling a subsystem for code generation also enables the Simulation Mode
parameter in the Execution Settings dialog (see the Subsystem block on
page 603). When this parameter is set to Normal, which is the default, the
subsystem is simulated like a normal atomic subsystem. When the parameter
is set to CodeGen, the generated code is compiled and linked to PLECS to be
executed instead of the subsystem during a simulation.

In connection with the “Traces” feature of the scopes (see “Adding Traces”
on page 96), this allows you to easily verify the fidelity of the generated code
against a normal simulation.

268

Code Generation with PLECS Blockset

Code Generation with PLECS Blockset

Standalone Code Generation

PLECS Blockset can generate C code in the same format as PLECS Stan-
dalone, and you can choose to generate code for a complete Circuit block or
for an individual subsystem. To generate code, choose Coder options... from
the Coder menu. This menu only appears if you have a license for the PLECS
Coder. For details on the coder options dialog please refer to the previous sec-
tion “Code Generation with PLECS Standalone” (on page 264).

Code generation can also be initiated via the MATLAB commands

plecs('codegen', 'path')
plecs('codegen', 'path', 'outputDir')

If outputDir is provided, the generated files will be placed in this folder in-
stead of the folder that is specified in the model.

Integration with Simulink Coder

In addition, PLECS Blockset fully integrates with Simulink Coder (formerly
Real-Time Workshop) to generate C code for your simulation model. Whenever
you start a build process from within Simulink, PLECS automatically gener-
ates the code for a circuit block and inserts it at the appropriate places into
the code generated by Simulink Coder.

Note Scopes that are placed in PLECS schematics are not updated during
a simulation using code generation. To view the simulation results, all scopes
must be placed in the Simulink model.

Simulink Coder Options

The code generation options for the Simulink Coder are configured on the
Simulink Coder pane of the PLECS simulation parameters.

269

11 Code Generation

Code generation target This parameter specifies the code generation tar-
get (see “Code Generation Targets” on page 270). The default, auto, means
that PLECS selects the target depending on the Simulink Coder target.

Inline circuit parameters for RSim target Specifies for the RSim target
whether component parameters should be evaluated at compile time and in-
lined into the code (on) or evaluated at run time (off). See also “Tunable Cir-
cuit Parameters in Rapid Simulations” (on page 272).

Generate license-free code (requires PLECS Coder license) If this option
is checked, PLECS will attempt to check-out a PLECS Coder license at build
time and, if successful, will generate code for the RSim target that will run
without requiring a PLECS license. Otherwise, the generated executable will
require a PLECS license at run time.

Show code generation progress If this option is checked, PLECS opens
a dialog window during code generation that shows the progress of the code
generation process. You can abort the process by clicking the Cancel button
or closing the dialog window.

Code Generation Targets

PLECS can generate code for two different Simulink Coder targets: the Rapid
Simulation target (or RSim target) and the Real-Time target. These two tar-
gets are described in detail in the following two sections. The table below
highlights the differences between the targets.

Comparison of Code Generation Targets

RSim Target Real-Time Target

Purpose Rapid, non-real-time simu-
lations.

Real-time simulations.

Technique A compressed description
of the circuit schematic is
embedded in the code and
interpreted at run time.

Signal and state-space
equations are inlined as
ANSI C code.

Limitations none Limited support for natu-
rally commutated devices
and non-linear components.

270

Code Generation with PLECS Blockset

Comparison of Code Generation Targets (contd.)

RSim Target Real-Time Target

Inlining Parameters may be de-
clared tunable, so that they
are evaluated at run time.

All parameters are inlined,
i.e. evaluated at compile
time and embedded into
the generated code.

Deployment Requires distribution of the
PLECS RSim module.

Generated code does not
have external dependen-
cies.

Licensing If a PLECS Coder license
is available at build time,
the generated code will run
without a license. Other-
wise, a PLECS license is
required at run time.

Requires a PLECS Coder
license at build time.

By default, PLECS automatically selects the appropriate target depending
on the target settings of Simulink Coder. To overrule this selection, open the
PLECS simulation parameters, and on the Advanced pane change the setting
Target to either RSim or RealTime.

Real-Time Target

The Real-Time Target is selected by default when you generate code using any
of the real-time targets of Simulink Coder. Code generation for the Real-Time
target requires a separate license for the PLECS Coder for PLECS Blockset.

For a detailed description of the code generation process for physical systems
and its current limitations see “Code Generation for Physical Systems” (on
page 257).

Rapid Simulation Target

The RSim target is selected by default when you run a simulation using
Simulink’s Rapid Accelerator mode or when you generate an executable us-
ing the RSim target or the S-Function target of Simulink Coder. The resulting

271

11 Code Generation

code links against the RSim module of PLECS, a shared library which is part
of the standard installation.

Deploying Rapid Simulation Executables

To deploy the generated executable you need to copy the appropriate shared
library file onto the target computer. The following table lists the library files
for the supported platforms.

Library Files for Rapid Simulations

Platform Library File

Windows 32-bit plecs\bin\win32\plecsrsim.dll

Windows 64-bit plecs\bin\win64\plecsrsim.dll

Mac Intel 32-bit plecs/bin/maci/libplecsrsim.dylib

Mac Intel 64-bit plecs/bin/maci64/libplecsrsim.dylib

Linux 64-bit plecs/bin/glnxa64/libplecsrsim.so

The library file must be copied into the same directory as the executable. Al-
ternatively, you can define the appropriate environment variable for your tar-
get computer such that it includes the directory where you have installed the
library file.

Licensing Protocols for the PLECS RSim Module

Depending on the build settings the RSim module may check out a PLECS
license for the duration of execution. It uses the environment variable
PLEXIM_LICENSE_FILE to locate the license file. If the module is unable to
check out a PLECS license, it issues an error message and stops the simula-
tion.

Tunable Circuit Parameters in Rapid Simulations

By default, PLECS evaluates the parameters of all circuit components at com-
pile time and inlines them into the circuit description. However, for certain

272

Code Generation with PLECS Blockset

applications – such as rapid simulations on different parameter sets or param-
eterized S-Functions – it is desirable that the parameters be evaluated at sim-
ulation start instead. This can be achieved by declaring the circuit parameters
tunable.

To declare circuit parameters tunable,

1 Mask the PLECS Circuit block and define all parameters that you wish to
keep tunable as mask variables. Mask variables can either be mask param-
eters (that appear in the parameter dialog) or variables defined in the mask
initialization commands. For more information see “Customizing the Circuit
Block” (on page 47).

2 On the Advanced pane of the PLECS simulation parameters, uncheck the
option Inline circuit parameters for RSim target.

3 Include the variable names in the list of tunable model parameters. Please
see the Simulink Coder User’s Guide for details.

Limitations on Tunable Circuit Parameters If you declare circuit parame-
ters tunable, the RSim module uses its own parser to evaluate parameter ex-
pressions at simulation start; it currently cannot handle mask initialization
commands. You will receive runtime errors if your circuit contains masked
subsystems using mask initialization commands, or if a parameter expression
contains a MATLAB function call.

Other limitations apply due to the way the Simulink Coder handles tunable
parameters:

• Circuit parameters must be double-precision, 2-dimensional, non-sparse ar-
rays.

• The first four characters of the parameter names must be unique.

273

11 Code Generation

274

12

Processor-in-the-Loop

As a separately licensed feature, PLECS offers support for Processor-in-the-
Loop (PIL) simulations, allowing the execution of control code on external
hardware tied into the virtual world of a PLECS model.

At the PLECS level, the PIL functionality consists of a specialized PIL block
that can be found in the Processor-in-the-loop library, as well as the Target
Manager, accessible from the Window menu. Also included with the PIL
library are high-fidelity peripheral models of MCUs used for the control of
power conversion systems.

On the embedded side, a PIL Framework library is provided to facilitate the
integration of PIL functionality into your project.

Motivation

When developing embedded control algorithms, it is quite common to be test-
ing such code, or portions thereof, by executing it inside a circuit simulator.
Using PLECS, this can be easily achieved by means of a C-Script or DLL
block. This approach is referred to as Software-in-the-loop (SIL). A SIL sim-
ulation compiles the embedded source code for the native environment of the
simulation tool (e.g. Win64) and executes the algorithms within the simulation
environment.

The PIL approach, on the other hand, executes the control algorithms on the
real embedded hardware. Instead of reading the actual sensors of the power
converter, values calculated by the simulation tool are used as inputs to the
embedded algorithm. Similarly, outputs of the control algorithms executing
on the processor are fed back into the simulation to drive the virtual environ-
ment. Note that SIL and PIL testing are also relevant when the embedded
code is automatically generated from the simulation model.

12 Processor-in-the-Loop

One of the major advantages of PIL over SIL is that during PIL testing, ac-
tual compiled code is executed on the real MCU. This allows the detection of
platform-specific software defects such as overflow conditions and casting er-
rors. Furthermore, while PIL testing does not execute the control algorithms
in true real-time, the control tasks do execute at the normal rate between two
simulation steps. Therefore, PIL simulation can be used to detect and ana-
lyze potential problems related to the multi-threaded execution of control algo-
rithms, including jitter and resource corruption. PIL testing can also provide
useful metrics about processor utilization.

How PIL Works

At the most basic level, a PIL simulation can be summarized as follows:

Principle of a PIL simulation

• Input variables on the target, such as current and voltage measurements,
are overridden with values provided by the PLECS simulation.

• The control algorithms are executed for one control period.
• Output variables on the target, such as PWM peripheral register values,

are read and fed back into the simulation.

276

How PIL Works

We refer to variables on the target which are overridden by PLECS as Over-
ride Probes. Variables read by PLECS are called Read Probes.

While Override Probes are set and Read Probes are read the dispatching of
the embedded control algorithms must be stopped. The controls must remain
halted while PLECS is updating the simulated model. In other words, the con-
trol algorithm operates in a stepped mode during a PIL simulation. However,
as mentioned above, when the control algorithms are executing, their behavior
is identical to a true real-time operation. We therefore call this mode of opera-
tion pseudo real-time.

Let us further examine the pseudo real-time operation in the context of an
embedded application utilizing nested control loops where fast high-priority
tasks (such as current control) interrupt slower lower-priority tasks (such as
voltage control). An example of such a configuration with two control tasks is
illustrated in the figure below. With every hardware interrupt (bold vertical
bar), the lower priority task is interrupted and the main interrupt service rou-
tine is executed. In addition, the lower priority task is periodically triggered
using a software interrupt. Once both control tasks have completed, the sys-
tem continues with the background task where lowest priority operations are
processed. The timing in this figure corresponds to true real-time operation.

Control Task 1

Control Task 2

Background Task

1 2 3 4 5 6

Nested Control Tasks

The next figure illustrates the timing of the same controller during a PIL sim-
ulation, with the stop and go symbols indicating when the dispatching of the
control tasks is halted and resumed.

After the hardware interrupt is received, the system stops the control dis-
patching and enters a communication loop where the values of the Override
Probes and Read Probes can be exchanged with the PLECS model. Once a
new step request is received from the simulation, the task dispatching is

277

12 Processor-in-the-Loop

Control Task 1

Control Task 2

Background Task

2 3

STOP

1

STOP STOP

Pseudo real-time operation

restarted and the control tasks execute freely during the duration of one in-
terrupt period. This pseudo real-time operation allows the user to analyze the
control system in a simulation environment in a fashion that is behaviorally
identical to a true real-time operation. Note that only the dispatching of the
control tasks is stopped. The target itself is never halted as communication
with PLECS must be maintained.

PIL Modes

The concept of using Override Probes and Read Probes allows tying actual
control code executing on a real MCU into a PLECS simulation without the
need to specifically recompile it for PIL.

You can think of Override Probes and Read Probes as the equivalent of test
points which can be left in the embedded software as long as desired. Soft-
ware modules with such test points can be tied into a PIL simulation at any
time.

Often, Override Probes and Read Probes are configured to access the registers
of MCU peripherals, such as analog-to-digital converters (ADCs) and pulse-
width modulation (PWM) modules. Additionally, specific software modules, e.g.
a filter block, can be equipped with Override Probes and Read Probes. This
allows unit-testing the module in a PIL simulation isolated from the rest of
the embedded code.

To permit safe and controlled transitions between real-time execution of the
control code, driving an actual plant, and pseudo real-time execution, in con-

278

Configuring PLECS for PIL

junction with a simulated plant, the following two PIL modes are distin-
guished:

• Normal Operation – Regular target operation in which PIL simulations
are inhibited.

• Ready for PIL – Target is ready for a PIL simulation, which corresponds
to a safe state with the power-stage disabled.

The transition between the two modes can either be controlled by the embed-
ded application, for example based on a set of digital inputs, or from PLECS
using the Target Manager.

Configuring PLECS for PIL

Once an embedded application is equipped with the PIL framework, and ap-
propriate Override Probes and Read Probes are defined, it is ready for PIL
simulations with PLECS.

PLECS uses the concept of Target Configurations to define global high-level
settings that can be accessed by any PLECS model. At the circuit level, the
PIL block is utilized to define lower level configurations such as the selection
of Override Probes and Read Probes used during simulation.

This is explained in further detail in the following sections.

Target Manager

The high-level configurations are made in the Target Manager, which is ac-
cessible in PLECS by means of the corresponding item in the Window menu.
The target manager allows defining and configuring targets for PIL simula-
tion, by associating them with a symbol file and specifying the communication
parameters. Target configurations are stored globally at the PLECS level and
are not saved in *.plecs or Simulink files. An example target configuration is
shown in the figure below.

279

12 Processor-in-the-Loop

Target Manager

The left hand side of the dialog window shows a list of targets that are cur-
rently configured. To add a new target configuration, click the button marked
+ below the list. To remove the currently selected target, click the button
marked -. You can reorder the targets by clicking and dragging an entry up
and down in the list.

The right hand side of the dialog window shows the parameter settings of
the currently selected target. Each target configuration must have a unique
Name.

The target configuration specifies the Symbol file and the communication
link settings.

The symbol file is the binary file (also called “object file”) corresponding to the
code executing on the target. PLECS will obtain most settings for PIL simu-
lations, as well as the list of Override Probes and Read Probes and their at-
tributes, from the symbol file.

Communication Links

A number of links are supported for communicating with the target. The de-
sired link can be selected in the Device type combo box. For communication
links that allow detecting connected devices, pressing the Scan button will
populate the Device name combo box with the names of all available devices.

280

Target Manager

Serial Device

The Serial device selection corresponds to conventional physical or virtual
serial communication ports. On a Windows machine, such ports are labeled
COMn, where n is the number of the port.

FTDI Device

If the serial adapter is based on an FTDI chip, the low-level FTDI driver can
be used directly by selecting the FTD2XX option. This device type offers im-
proved communication speed over the virtual communication port (VCP) asso-
ciated with the FTDI adapter.

TCP/IP Socket

The communication can also be routed over a TCP/IP socket by selecting the
TCP Socket device type.

TCP/IP Communication

In this case the Device name corresponds to the IP address (or URL) and
port number, separated by a colon (:).

281

12 Processor-in-the-Loop

Serial over GDB

The Serial over GDB device type is used in conjunction with communica-
tion over JTAG. It requires that a GDB server be running and connected to
the embedded target. The configuration of this device is similar to the TCP
Socket and consists of specifying a URL (typically the localhost 127.0.0.1) and
a TCP/IP port. Please review the documentation of your GDB server for more
information regarding port settings.

Target Properties

By pressing the Properties button, target information can be displayed as
shown in the figure below.

Target Properties

In addition to reading and displaying information from the symbol file, PLECS
will also query the target for its identity and check the value against the one
stored in the symbol file. This verifies the device settings and ensures that the
correct binary file has been selected. Further, the user can request for a target
mode change to configure the embedded code to run in Normal Operation
mode or in Ready for PIL mode.

PIL Block

The PIL block ties a processor into a PLECS simulation by making Override
Probes and Read Probes, configured on the target, available as input and out-

282

PIL Block

put ports, respectively.

PIL Block

A PIL block is associated with a target defined in the target manager, which
is selected from the Target combo box. The Configure. . . button provides a
convenient shortcut to the target manager for configuring existing and new
targets.

PIL Block General Tab

The execution of the PIL block can be triggered at a fixed Discrete-Periodic
rate by configuring the Sample time to a positive value. As with other
PLECS components, an Inherited sample time can be selected by setting the
parameter to -1 or [-1 0].
A trigger port can be enabled using the External trigger combo box. This is
useful if the control interrupt source is part of the PLECS circuit, such as an

283

12 Processor-in-the-Loop

ADC or PWM peripheral model.

Typically, an Inherited sample time is used in combination with a trigger
port. If a Discrete-Periodic rate is specified, the trigger port will be sampled
at the specified rate.

Similar to the DLL block, the Output delay setting permits delaying the out-
put of each simulation step to approximate processor calculation time.

Note Make sure the value for the Output delay does not exceed the sample
time of the block, or the outputs will never be updated.

A delay of 0 is a valid setting, but it will create direct-feedthrough between
inputs and outputs.

PIL Block Inputs Tab

The PIL block extracts the names of Override Probes and Read Probes from
the symbol file selected in the target configuration and presents lists for selec-
tion as input and output signals, as shown in the figure above.

284

PIL Block

The number of inputs and outputs of a PIL block is configurable with the
Number of inputs and Number of outputs settings. To associate Override
Probes or Read Probes with a given input or output, select an input/output
from the combo box on the right half of the dialog. Then drag the desired
Override Probes or Read Probes from the left into the area below or add them
by selecting them and clicking the > button. To remove an Override Probe or
Read Probe, select it and either press the Delete key or < button.

Note It is possible to multiplex several Override/Read Probe signals into one
input/output. The sequence can be reordered by dragging the signals up and
down the list.

Starting with PLECS 3.7, the PIL block allows setting initial conditions for
Override Probes.

Also new with PLECS 3.7 is the Calibrations tab, which permits modifying
embedded code settings such as regulator gains and filter coefficients.

PIL Block Calibrations Tab

285

12 Processor-in-the-Loop

Calibrations can be set in the Value column. If no entry is provided, the em-
bedded code will use the default value as indicated in the Default column.

286

13

Components by Category

This chapter lists the blocks of the Component library by category.

System

Configurable Subsystem Provide subsystem with exchangeable implementa-
tions

Display Display signal values in the schematic

Electrical Ground Connect to common electrical ground

Electrical Label Connect electrical potentials by name

Electrical Port Add electrical connector to subsystem

Enable Control execution of an atomic subsystem

Manual Signal Switch Manually select one of two input signals

Pause / Stop Pause or stop the simulation

Scope Display simulation results versus time

Signal Demultiplexer Split vectorized signal

Signal From Reference signal from Signal Goto block by name

Signal Goto Make signal available by name

Signal Inport Add signal input connector to subsystem

Signal Multiplexer Combine several signals into vectorized signal

Signal Outport Add signal output connector to subsystem

13 Components by Category

Signal Selector Select or reorder elements from vectorized signal

Signal Switch Select one of two input signals depending on con-
trol signal

Subsystem Create functional entity in hierarchical simulation
model

To File Write time and signal values to file

Trigger Control execution of an atomic subsystem

Wire Multiplexer Bundle several wires into bus

Wire Selector Select or reorder elements from wire bus

XY Plot Display correlation between two signals

Assertions

Assert Dynamic Lower Limit Check whether a signal stays above another signal

Assert Dynamic Range Check whether a signal stays between two other
signals

Assert Dynamic Upper Limit Check whether a signal stays below another signal

Assertion Check whether a condition is true

Assert Lower Limit Check whether a signal stays above a constant

Assert Range Check whether a signal stays within a constant
range

Assert Upper Limit Check whether a signal stays below a constant

Control

Sources

Clock Provide current simulation time

Constant Generate constant signal

288

Control

Initial Condition Output specified initial value in the first simula-
tion step

Pulse Generator Generate periodic rectangular pulses

Ramp Generate constantly rising or falling signal

Sine Wave Generate time-based sine wave with optional bias

Step Generate constant signal with instantaneous step
change

Triangular Wave Generator Generate periodic triangular or sawtooth waveform

White Noise Generate normally distributed random numbers

Random Numbers Generate uniformly distributed random numbers

Math

Abs Calculate absolute value of input signal

Algebraic Constraint Enforce an algebraic constraint

Data Type Cast the input signal to the specified data type

Gain Multiply input signal by constant

Math Function Apply specified mathematical function

Minimum / Maximum Output input signal with highest resp. lowest
value

Offset Add constant to input signal

Product Multiply and divide scalar or vectorized input
signals

Rounding Round floating point signal to integer values

Signum Provide sign of input signal

Sum Add and subtract input signals

Trigonometric Function Apply specified trigonometric function

Continuous

289

13 Components by Category

Integrator Integrate input signal with respect to time

State Space Implement linear time-invariant system as state-
space model

Transfer Function Model linear time-invariant system as transfer
function

Delays

Memory Provide input signal from previous major time step

Pulse Delay Delay discrete-value input signal by fixed time

Transport Delay Delay continuous input signal by fixed time

Turn-on Delay Delay rising flank of input pulses by fixed dead
time

Discontinuous

Comparator Compare two input signals with minimal hystere-
sis

Dead Zone Output zero while input signal is within dead zone
limits

Hit Crossing Detect when signal reaches or crosses given value

Quantizer Apply uniform quantization to input signal

Rate Limiter Limit rising and falling rate of change

Relay Toggle between on- and off-state with configurable
threshold

Saturation Limit input signal to upper and/or lower value

Discrete

Delay Delay input signal by given number of samples

Discrete Fourier Transform Perform discrete Fourier transform on input signal

290

Control

Discrete Integrator Calculate discrete integral of input signal

Discrete Mean Value Calculate running mean value of input signal

Discrete RMS Value Calculate root mean square (RMS) value of input
signal

Discrete State Space Implement discrete time-invariant system as state-
space model

Discrete Total Harmonic
Distortion

Calculate total harmonic distortion (THD) of input
signal

Discrete Transfer Function Model discrete system as transfer function

Zero-Order Hold Sample and hold input signal periodically

Filters

Moving Average Continuously average input signal over specified
time period

Periodic Average Periodically average input signal over specified
time

Periodic Impulse Average Periodically average Dirac impulses over specified
time

Functions & Tables

1D Look-Up Table Compute piece-wise linear function of one input
signal

2D Look-Up Table Compute piece-wise linear function of two input
signals

3D Look-Up Table Compute piece-wise linear function of three input
signals

C-Script Execute custom C code

DLL Interface with externally generated dynamic-link
library

291

13 Components by Category

Fourier Series Synthesize periodic output signal from Fourier
coefficients

Function Apply arbitrary arithmetic expression to scalar or
vectorized input signal

Logical

Combinatorial Logic Use binary input signals to select one row from
truth table

Compare to Constant Compare input signal to constant threshold

D Flip-flop Implement edge-triggered flip-flop

Edge Detection Detect edges of pulse signal in given direction

JK Flip-flop Implement edge-triggered JK flip-flop

Logical Operator Combine input signals logically

Monoflop Generate pulse of specified width when triggered

Relational Operator Compare two input signals

SR Flip-flop Implement set-reset flip-flop

Modulators

2-Pulse Generator Generate firing pulses for H-bridge thyristor recti-
fier

3-Phase Overmodulation Extend linear range of modulation index for 3-
phase inverters

6-Pulse Generator Generate firing pulses for 3-phase thyristor recti-
fier

Blanking Time Generate commutation delay for 2-level inverter
bridges

Blanking Time (3-Level) Generate commutation delay for 3-level inverter
bridges

Peak Current Controller Implement peak current mode control

292

Control

Sawtooth PWM Generate PWM signal using sawtooth carrier

Sawtooth PWM (3-Level) Generate 3-level PWM signal using sawtooth carri-
ers

Space Vector PWM Generate PWM signals for 3-phase inverter using
space-vector modulation

Space Vector PWM (3-Level) Generate PWM signals for 3-phase NPC inverter
using space-vector modulation

Symmetrical PWM Generate PWM signal using symmetrical triangu-
lar carrier

Symmetrical PWM (3-Level) Generate 3-level PWM signal using symmetrical
triangular carriers

Transformations

Polar to Rectangular Convert polar coordinates to Cartesian coordinates

Rectangular to Polar Convert Cartesian coordinates to polar coordinates

Transformation 3ph->RRF Transform 3-phase signal to rotating reference
frame

Transformation 3ph->SRF Transform 3-phase signal to stationary reference
frame

Transformation RRF->3ph Transform vector in rotating reference frame into
3-phase signal

Transformation RRF->SRF Transform vector from rotating to stationary refer-
ence frame

Transformation SRF->3ph Transform vector in stationary reference frame
into 3-phase signal

Transformation SRF->RRF Transform vector from stationary to rotating refer-
ence frame

State Machine

State Machine Model a state machine

293

13 Components by Category

Small Signal Analysis

(PLECS Standalone only)

Small Signal Gain Measure loop gain of closed control loop using
small-signal analysis

Small Signal Perturbation Generate perturbation signal for small-signal anal-
ysis

Small Signal Response Measure system response for small-signal analysis

Electrical

Sources

Current Source (Controlled) Generate variable current

Current Source AC Generate sinusoidal current

Current Source DC Generate constant current

Voltage Source (Controlled) Generate variable voltage

Voltage Source AC Generate sinusoidal voltage

Voltage Source AC (3-Phase) Generate 3-phase sinusoidal voltage

Voltage Source DC Generate constant voltage

Meters

Ammeter Output measured current as signal

Meter (3-Phase) Measure voltages and currents of 3-phase system

Voltmeter Output measured voltage as signal

Passive Components

Capacitor Ideal capacitor

294

Electrical

Electrical Algebraic Compo-
nent

Enforce an algebraic constraint in terms of voltage
and current

Inductor Ideal inductor

Mutual Inductor Ideal mutual inductor

Mutual Inductance (2 Wind-
ings)

Magnetic coupling between two lossy windings

Mutual Inductance (3 Wind-
ings)

Magnetic coupling between three lossy windings

Pi-Section Line Single-phase pi-section transmission line

Piece-wise Linear Resistor Resistance defined by voltage-current pairs

Resistor Ideal resistor

Saturable Capacitor Capacitor with piece-wise linear saturation

Saturable Inductor Inductor with piece-wise linear saturation

Transmission Line (3ph) 3-phase transmission line

Variable Capacitor Capacitance controlled by signal

Variable Inductor Inductance controlled by signal

Variable Resistor Resistance controlled by signal

Variable Resistor with Con-
stant Capacitor

Controlled resistance in parallel with constant
capacitance

Variable Resistor with Con-
stant Inductor

Controlled resistance in series with constant in-
ductance

Variable Resistor with Vari-
able Capacitor

Controlled resistance in parallel with controlled
capacitance

Variable Resistor with Vari-
able Inductor

Controlled resistance in series with controlled
inductance

Power Semiconductors

Diode Ideal diode with optional forward voltage and
on-resistance

Diode with Reverse Recovery Dynamic diode model with reverse recovery

295

13 Components by Category

GTO Ideal GTO with optional forward voltage and on-
resistance

GTO (Reverse Conducting) Ideal GTO with ideal anti-parallel diode

IGBT Ideal IGBT with optional forward voltage and
on-resistance

IGBT with Diode Ideal IGBT with ideal anti-parallel diode

IGBT with Limited di/dt Dynamic IGBT model with finite current slopes
during turn-on and turn-off

IGCT (Reverse Blocking) Ideal IGCT with optional forward voltage and
on-resistance

IGCT (Reverse Conducting) Ideal IGCT with ideal anti-parallel diode

MOSFET Ideal MOSFET with optional on-resistance

MOSFET with Diode Ideal MOSFET with ideal anti-parallel diode

MOSFET with Limited di/dt Dynamic MOSFET model with finite current
slopes during turn-on and turn-off

Thyristor Ideal thyristor (SCR) with optional forward voltage
and on-resistance

Thyristor with Reverse Recov-
ery

Dynamic thyristor (SCR) model with reverse recov-
ery

TRIAC Ideal TRIAC with optional forward voltage and
on-resistance

Zener Diode Zener diode with controlled reverse breakdown
voltage

Power Modules

IGBT Chopper (Low-Side
Switch)

Chopper used in boost converters.

IGBT Chopper (High-Side
Switch)

Chopper used in buck converters.

IGBT Chopper (Low-Side
Switch with Reverse Diode)

Chopper used in boost converters.

296

Electrical

IGBT Chopper (High-Side
Switch with Reverse Diode)

Chopper used in buck converters.

IGBT Half Bridge Single leg of a 2-level voltage source inverter.

IGBT 3-Level Half Bridge
(NPC)

Single leg of a 3-level neutral-point clamped volt-
age source inverter.

IGBT Half Bridges (Low-
/High-Side Connected)

Series-connected inverter cells for modular multi-
level converters.

IGBT Full Bridges (Series
Connected)

Series-connected inverter cells for modular multi-
level converters.

Switches

Breaker AC circuit breaker opening at zero current

Double Switch Changeover switch with two positions

Manual Double Switch Manual changeover switch with two positions

Manual Switch Manual on-off switch

Manual Triple Switch Manual changeover switch with three positions

Set/Reset Switch Bistable on-off switch

Switch On-off switch

Triple Switch Changeover switch with three positions

Transformers

Ideal Transformer Ideally coupled windings without inductance

Linear Transformer (2 Wind-
ings)

Single-phase transformer with winding resistance
and optional core loss

Linear Transformer (3 Wind-
ings)

Single-phase transformer with winding resistance
and optional core loss

Saturable Transformers Single-phase transformers with two resp. three
windings and core saturation

297

13 Components by Category

Transformers (3ph, 2 Wind-
ings)

3-phase transformers in Yy, Yd, Yz, Dy, Dd and Dz
connection

Transformers (3ph, 3 Wind-
ings)

3-phase transformers in Ydy and Ydz connection

Machines

Brushless DC Machine Detailed model of brushless DC machine excited
by permanent magnets

Brushless DC Machine (Sim-
ple)

Simplified model of brushless DC machine excited
by permanent magnets

DC Machine Simple model of DC machine

Induction Machine (Slip Ring) Non-saturable induction machine with slip-ring
rotor

Induction Machine (Open
Stator Windings)

Non-saturable induction machine with squirrel-
cage rotor and open stator windings

Induction Machine (Squirrel
Cage)

Non-saturable induction machine with squirrel-
cage rotor

Induction Machine with Satu-
ration

Induction machine with slip-ring rotor and main-
flux saturation

Non-Excited Synchronous
Machine

Non-excited synchronous machine configurable
with lookup tables

Permanent Magnet Syn-
chronous Machine

Synchronous machine excited by permanent mag-
nets

Switched Reluctance Machine Detailed model of switched reluctance machine
with open windings

Synchronous Machine (Round
Rotor)

Smooth air-gap synchronous machine with main-
flux saturation

Synchronous Machine
(Salient Pole)

Salient-pole synchronous machine with main-flux
saturation

Synchronous Reluctance
Machine

Synchronous reluctance machine configurable with
lookup tables

298

Thermal

Converters

Diode Rectifier (3ph) 3-phase diode rectifier

Ideal 3-Level Converter (3ph) Switch-based 3-phase 3-level converter

Ideal Converter (3ph) Switch-based 3-phase converter

IGBT 3-Level Converter (3ph) 3-phase 3-level neutral-point clamped IGBT con-
verter

IGBT Converter (3ph) 3-phase IGBT converter

MOSFET Converter (3ph) 3-phase MOSFET converter

Thyristor Rectifier/Inverter 3-phase thyristor rectifier/inverter

Electronics

Op-Amp Ideal operational amplifier with finite gain

Op-Amp with Limited Output Ideal operational amplifier with limited output
voltage

Model Settings

Electrical Model Settings Configure settings for an individual electrical cir-
cuit

Thermal

Ambient Temperature Connect to Heat Sink on which component is
placed

Constant Heat Flow Generate constant heat flow

Constant Temperature Provide constant temperature

Controlled Heat Flow Generate variable heat flow

Controlled Temperature Provide variable temperature

299

13 Components by Category

Heat Flow Meter Output measured heat flow as signal

Heat Sink Isotherm environment for placing components

Thermal Capacitor Thermal capacitance of piece of material

Thermal Chain Thermal impedance implemented as RC chain

Thermal Ground Connect to common reference temperature

Thermal Model Settings Configure settings for an individual thermal sys-
tem

Thermal Port Add thermal connector to subsystem

Thermal Resistor Thermal resistance of piece of material

Thermometer Output measured temperature as signal

Magnetic

Winding Ideal winding defining an electro-magnetic inter-
face

Magnetic Permeance Linear magnetic permeance

Linear Core Linear magnetic core element

Air Gap Air gap in a magnetic core

Leakage Flux Path Permeance of linear leakage flux path

Saturable Core Magnetic core element with saturation

Hysteretic Core Magnetic core element with static hysteresis

Variable Magnetic Perme-
ance

Variable permeance controlled by external signal

Magnetic Resistance Effective magnetic resistance for modeling losses

MMF Meter Output the measured magneto-motive force

Flux Rate Meter Output the measured rate-of-change of magnetic
flux

MMF Source (Constant) Generate a constant magneto-motive force

MMF Source (Controlled) Generate a variable magneto-motive force

300

Mechanical

Magnetic Port Add magnetic connector to subsystem

Mechanical

Translational

Sources

Force (Constant) Generate constant force

Force (Controlled) Generate variable force

Translational Speed (Con-
stant)

Maintain constant linear speed

Translational Speed (Con-
trolled)

Maintain variable linear speed

Sensors

Force Sensor Output measured force as signal

Translational Speed Sensor Output measured linear speed as signal

Position Sensor Output measured absolute or relative position as
signal

Components

Translational Reference Connect to translational reference frame

Translational Port Add translational flange to subsystem

Mass Model sliding mass with inertia

Translational Spring Ideal translational spring

Translational Damper Ideal viscous translational damper

Translational Clutch Ideal translational clutch

Translational Backlash Ideal translational backlash

301

13 Components by Category

Translational Hard Stop Ideal translational single- or double-sided hard
stop

Translational Friction Ideal translational stick/slip friction

Rack and Pinion Ideal conversion between translational and rota-
tional motion

Translational Algebraic Com-
ponent

Define an algebraic constraint in terms of force
and speed

Model Settings

Translational Model Settings Configure settings for an individual mechanical
system

Rotational

Sources

Torque (Constant) Generate constant torque

Torque (Controlled) Generate variable torque

Rotational Speed (Constant) Maintain constant angular speed

Rotational Speed (Controlled) Maintain variable angular speed

Sensors

Torque Sensor Output measured torque as signal

Rotational Speed Sensor Output measured angular speed as signal

Angle Sensor Output measured absolute or relative angle as
signal

Components

302

Additional Simulink Blocks

Rotational Reference Connect to rotational reference frame

Rotational Port Add rotational flange to subsystem

Inertia Model rotating body with inertia

Torsion Spring Ideal torsion spring

Rotational Damper Ideal viscous rotational damper

Rotational Clutch Ideal rotational clutch

Rotational Backlash Ideal rotational backlash

Rotational Hard Stop Ideal rotational single- or double-sided hard stop

Rotational Friction Ideal rotational stick/slip friction

Gear Ideal gear

Planetary Gear Set Ideal planetary gear set

Rack and Pinion Ideal conversion between translational and rota-
tional motion

Rotational Algebraic Compo-
nent

Define an algebraic constraint in terms of torque
and angular speed

Model Settings

Rotational Model Settings Configure settings for an individual mechanical
system

Additional Simulink Blocks

(PLECS Blockset only)

AC Sweep Perform AC sweep

Impulse Response Analysis Perform impulse response analysis

Loop Gain Analysis Determine loop gain of closed control loop

Steady-State Analysis Determine periodic steady-state operating point

Timer Generate piece-wise constant signal

303

13 Components by Category

304

14

Component Reference

This chapter lists the contents of the Component library in alphabetical order.

14 Component Reference

1D Look-Up Table

Purpose Compute piece-wise linear function of one input signal

Library Control / Functions & Tables

Description

1D
Table

The 1D Look-Up Table block maps an input signal to an output signal. You
define the mapping function by specifying a vector of input values and a vec-
tor of output values. If the input signal lies within the range of the input vec-
tor, the output value is calculated by linear interpolation between the appro-
priate two points. If the input signal is out of bounds, the block extrapolates
using the first or last two points.

Step transitions are achieved by repeating an input value with different out-
put values. If the input signal exactly matches the input value of such a dis-
continuity, the output signal will be the output value of the mapping function
that is first encountered when moving away from the origin. If the discontinu-
ity is at input value 0, the output signal will be the average of the two output
values. Provided zero-crossing signals are not active (see “Locate discontinu-
ities” below) this behavior can be overridden by defining three output values
for the same input value; in this case the middle output value will be chosen.

Use the 2D Look-Up Table block (see page 308) to map two input signals to an
output signal.

Parameters Vector of input values x
The vector of input values x. This vector must be the same size as the out-
put vector and monotonically increasing. It should not contain more than
three identical values.

Vector of output values f(x)
The vector containing the output values f(x). This vector must be the
same size as the input vector.

Locate discontinuities
When set to on, the Look-Up Table defines zero-crossing signals that pre-
vent a variable-step solver from inadvertently stepping over a discontinu-
ity of the input-output mapping or its derivative.

Note that the use of zero-crossing signals forces the mapping to be left- or
right-continuous. Therefore, it is not possible to specify an arbitrary out-
put value at a step discontinuity: if three output values are defined for the

306

1D Look-Up Table

same input, the middle output value is neglected. Moreover, if the step dis-
continuity is at input value 0, no averaging is performed: the first output
value corresponding to 0 is selected instead.

When set to off, the Look-Up Table does not explicitly influence the steps
taken by a variable-step solver.

Probe Signals Input
The block input signal.

Output
The block output signal.

307

14 Component Reference

2D Look-Up Table

Purpose Compute piece-wise linear function of two input signals

Library Control / Functions & Tables

Description

2D
Table

x
y

The 2D Look-Up Table block maps two input signals to an output signal. You
define the mapping function by specifying two vectors of input values and a
matrix of output values. The input vector x corresponds to the rows of the out-
put matrix, the input vector y, to the columns.

The output value is interpolated or extrapolated from the block parameters
using the technique described for the 1D Look-Up Table block (see page 306).

Parameters Vector of input values x
The vector of input values x. This vector must be the same size as the
number of rows in the output matrix and monotonically increasing. It
should not contain more than three identical values.

Vector of input values y
The vector of input values y. This vector must be the same size as the
number of columns in the output matrix and monotonically increasing. It
should not contain more than three identical values.

Matrix of output values f(x,y)
The matrix containing the output values f(x, y). The number of rows and
columns must match the size of the input vectors.

Locate discontinuities
When set to on, the Look-Up Table defines zero-crossing signals that pre-
vent a variable-step solver from inadvertently stepping over a discontinu-
ity of the input-output mapping or its derivative.

When set to off, the Look-Up Table does not explicitly influence the steps
taken by a variable-step solver.

Probe Signals Input x
The block input signal x.

Input y
The block input signal y.

Output
The block output signal.

308

2-Pulse Generator

2-Pulse Generator

Purpose Generate firing pulses for H-bridge thyristor rectifier

Library Control / Modulators

Description This block generates the pulses used to fire the thyristors of an H-bridge rec-
tifier. The inputs of the block are a logical enable signal, a ramp signal ϕ (pro-
duced e.g. by a PLL), and the firing angle alpha.

309

14 Component Reference

3D Look-Up Table

Purpose Compute piece-wise linear function of three input signals

Library Control / Functions & Tables

Description

3D
Table

x
y
z

The 3D Look-Up Table block maps three input signals to an output signal.
You define the mapping function by specifying three vectors of input values
and an array of output values. The input vectors x, y and z correspond to the
first, second and third dimension of the output array.

The output value is interpolated or extrapolated from the block parameters
using the technique described for the 1D Look-Up Table block (see page 306).

Parameters Vector of input values x
The vector of input values x. This vector must be the same size as the size
of the first dimension in the output array and monotonically increasing. It
should not contain more than three identical values.

Vector of input values y
The vector of input values y. This vector must be the same size as the size
of the second dimension in the output array and monotonically increasing.
It should not contain more than three identical values.

Vector of input values z
The vector of input values z. This vector must be the same size as the size
of the third dimension in the output array and monotonically increasing. It
should not contain more than three identical values.

3D array of output values f(x,y,z)
The array containing the output values f(x, y, z). The dimensions must
match the size of the input vectors.

Locate discontinuities
When set to on, the Look-Up Table defines zero-crossing signals that pre-
vent a variable-step solver from inadvertently stepping over a discontinu-
ity of the input-output mapping or its derivative.

When set to off, the Look-Up Table does not explicitly influence the steps
taken by a variable-step solver.

Probe Signals Input x
The block input signal x.

Input y
The block input signal y.

310

3D Look-Up Table

Input z
The block input signal z.

Output
The block output signal.

311

14 Component Reference

3-Phase Overmodulation

Purpose Extend linear range of modulation index for 3-phase inverters

Library Control / Modulators

Description For three-phase signals, this block extends the linear range of the modulation
index from [-1 1] to [-1.154 1.154] by adding a zero-sequence offset. This block
may be used for the control of three-phase converters without neutral point
connection such as the IGBT Converter (see page 426).
The figures below illustrates the working principle of the 3-Phase Overmodu-
lation block in conjunction with the Symmetrical PWM (see page 612).

−1

0

1

Original modulation indices

−1

0

1

Offset

−1

0

1

Corrected modulation indices

−1

0

1

Resulting pulses

312

6-Pulse Generator

6-Pulse Generator

Purpose Generate firing pulses for 3-phase thyristor rectifier

Library Control / Modulators

Description This block generates the pulses used to fire the thyristors of a 6-pulse rectifier
or inverter. The inputs of the block are a logical enable signal, a ramp signal
ϕ (produced e.g. by a PLL), and the firing angle alpha.

If the “Double pulses” option is selected, each thyristor receives two pulses:
one when the firing angle is reached, and a second, when the next thyristor is
fired.

Parameters Pulse width
The width of the firing pulses in radians with respect to one period of fun-
damental frequency.

Pulse type
“Double pulses” enables a second firing pulse for each thyristor.

313

14 Component Reference

Abs

Purpose Calculate absolute value of input signal

Library Control / Math

Description The Abs block outputs the absolute value of the input signals, y = |u|.

Probe Signals Input
The block input signal.

Output
The block output signal.

314

Algebraic Constraint

Algebraic Constraint

Purpose Enforce an algebraic constraint by solving a system of equations

Library Control / Math

Description The Algebraic Constraint block outputs the value that produces zero at the in-
put. The output must affect the input by means of a direct feedthrough path.
The block ensures that the input signal is zero at all times.

The direct feedthrough path defines a function f of the output signal x. The
Algebraic Constraint block solves the system of equations f(x) = 0. The input
and output signals must have the same width, i.e. the number of equations
must equal the number of unknowns.

Note The Algebraic Constraint block creates an algebraic loop. See section
“Block Sorting” (on page 29) for more information on algebraic loops.

Parameters Initial guess
A guess of the solution x at the start of the simulation. The parameter can
be either a scalar or a vector with the same width as the output and input
signals. If a scalar is specified, the value is used as an initial guess for all
components of the output signal. The default is 0.

Probe Signals Residual
The constraint residual f .

Solution
The computed solution x.

315

14 Component Reference

Ambient Temperature

Purpose Connect to Heat Sink on which component is placed

Library Thermal

Description The Ambient Temperature is only useful in subsystems. When placed in a
subsystem, it provides a thermal connection to the heat sink that encloses the
subsystem.

For more information see section “Heat Sinks and Subsystems” (on page 120).

Note Ambient Temperature blocks may not be used in schematics that con-
tain Thermal Port blocks (see page 635).

316

Air Gap

Air Gap

Purpose Air gap in a magnetic core

Library Magnetic

Description This component models an air gap in a magnetic core. It establishes a linear
relationship between the magnetic flux Φ and the magneto-motive force F

Φ

F
=
µ0A

l

where µ0 = 4π × 10−7 N/A2 is the magnetic constant, A is the cross-sectional
area and l the length of the flux path.

Parameters Cross-sectional area
Effective cross-sectional area A of the air gap, in m2.

Length of flux path
Effective length l of the air gap, in m.

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the air gap, in A/m.

Flux density
The magnetic flux density B in the air gap, in teslas (T).

317

14 Component Reference

Ammeter

Purpose Output measured current as signal

Library Electrical / Meters

Description

A

The Ammeter measures the current through the component and provides it
as a signal at the output. The direction of a positive current is indicated with
a small arrow in the component symbol. The output signal can be made ac-
cessible in Simulink with an Output block (see page 583) or by dragging the
component into the dialog box of a Probe block.

Note The Ammeter is ideal, i.e. it has zero internal resistance. Hence, if mul-
tiple ammeters are connected in parallel the current through an individual am-
meter is undefined. This produces a run-time error.

Likewise, if switches connected in parallel are all in closed position the current
through the individual switches is not properly defined. Although this does not
produce a run-time error it may lead to unexpected simulation results.

Probe Signal Measured current
The measured current in amperes (A).

318

Angle Sensor

Angle Sensor

Purpose Output measured absolute or relative angle as signal

Library Mechanical / Rotational / Sensors

Description The Angle Sensor measures the relative angle of the flange marked with a dot
with respect to the other flange. If the other flange is connected to the refer-
ence frame, the absolute angle is measured.

Note Speed and angle sensors are ideally compliant. Hence, if multiple speed
or angle sensors are connected in series the speed or angle measured by an in-
dividual sensor is undefined. This produces a run-time error.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Initial angle
The angle at simulation start, in radians.

Probe Signal Angle
The measured angle, in radians.

319

14 Component Reference

Assert Dynamic Lower Limit

Purpose Issue a warning or an error message when the input exceeds the specified dy-
namic lower limit

Library Assertions

Description This block checks whether the middle input signal lies above the other input
signal. When the check fails, a message is added to the diagnostics window
and the simulation may be paused or stopped.

Parameters Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is above the lower limit and 0 otherwise.

Lower limit
The lower limit input signal.

320

Assert Dynamic Range

Assert Dynamic Range

Purpose Issue a warning or an error message when the input leaves the specified dy-
namic range

Library Assertions

Description This block checks whether the middle input signal lies between the two other
input signals. When the check fails, a message is added to the diagnostics
window and the simulation may be paused or stopped.

Parameters Limits
Either include or exclude, indicating whether the limits are included in
or excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is within the range and 0 otherwise.

Upper limit
The upper limit input signal.

Lower limit
The lower limit input signal.

321

14 Component Reference

Assert Dynamic Upper Limit

Purpose Issue a warning or an error message when the input exceeds the specified dy-
namic upper limit

Library Assertions

Description This block checks whether the middle input signal lies below the other input
signal. When the check fails, a message is added to the diagnostics window
and the simulation may be paused or stopped.

Parameters Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is below the upper limit and 0 otherwise.

Upper limit
The upper limit input signal.

322

Assertion

Assertion

Purpose Issue a warning or an error message when the input becomes 0

Library Assertions

Description The assertion block checks whether a condition stays true during the simula-
tion. While the input signal is non-zero, the block does nothing. When the in-
put signal becomes zero, the specified message appears. Depending on the “ac-
tion” setting, the message is added either as a warning or as an error to the
diagnostics window. If it is added as a warning, it is possible to additionally
automatically pause the simulation. If it is added as an error, the simulation
always stops. To disable the assertion, set its action to ignore.

Parameters Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Highlight level
The number of levels the highlight is propagated upwards in the compo-
nent hierarchy when the assertion fails. A highlight level of 0 means that
the assertion block itself will be highlighted when the assertion fails. A
highlight level of 1 means that the component containing the assertion
block will be highlighted when the assertion fails, etc.

323

14 Component Reference

Assert Lower Limit

Purpose Issue a warning or an error message when the input exceeds the specified
lower limit

Library Assertions

Description This block checks whether the input signal lies above the specified lower limit.
When the check fails, a message is added to the diagnostics window and the
simulation may be paused or stopped.

Parameters Lower limit
A constant specifying the lower limit for the input signal.

Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is above the lower limit and 0 otherwise.

324

Assert Range

Assert Range

Purpose Issue a warning or an error message when the input leaves the specified
range

Library Assertions

Description This block checks whether the input signal lies between the specified lower
and upper limits. When the check fails, a message is added to the diagnostics
window and the simulation may be paused or stopped.

Parameters Upper limit
A constant specifying the upper limit for the input signal.

Lower limit
A constant specifying the lower limit for the input signal.

Limits
Either include or exclude, indicating whether the limits are included in
or excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is within the range and 0 otherwise.

325

14 Component Reference

Assert Upper Limit

Purpose Issue a warning or an error message when the input exceeds the specified up-
per limit

Library Assertions

Description This block checks whether the input signal lies below the specified upper
limit. When the check fails, a message is added to the diagnostics window and
the simulation may be paused or stopped.

Parameters Upper limit
A constant specifying the upper limit for the input signal.

Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window;
warning/pause: when the assertion fails, a warning is added to the diag-
nostics window and the simulation is paused; error: when the assertion
fails, an error is added to the diagnostics window and the simulation is
stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 103). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 85).

Message
The message that is displayed in the diagnostics window when the asser-
tion fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is below the upper limit and 0 otherwise.

326

Blanking Time

Blanking Time

Purpose Generate commutation delay for 2-level inverter bridges

Library Control / Modulators

Description This block generates a blanking time for 2-level inverter bridges so that
the turn-on of one switch is delayed with respect to the turn-off of the other
switch in the same inverter leg.

The input s is a switching function with the values -1 and 1 generated by a 2-
level modulator such as the Symmetrical PWM generator (see page 612). The
values of the output s’ are either -1 (lower switch turned on), 0 (both switches
off) or 1 (upper switch on). If the input is a vector, the output is also a vector
of the same width.

Parameter Delay time
The delay in seconds (s) between the turn-off of one switch and the turn-on
of the other switch in an inverter leg.

327

14 Component Reference

Blanking Time (3-Level)

Purpose Generate commutation delay for 3-level inverter bridges

Library Control / Modulators

Description This block generates a blanking time for 3-level inverter bridges so that
the turn-on of one switch is delayed with respect to the turn-off of the other
switch in the same inverter leg.

The input s is a switching function with the values -1, 0 and 1 generated by a
3-level modulator such as the Symmetrical PWM (3-Level) generator (see page
614). The values of the output s’ are either -1, -0.5, 0, 0.5 or 1. If the input is
a vector, the output is also a vector of the same width.

Parameter Delay time
The delay in seconds (s) between the turn-off of one switch and the turn-on
of another switch in an inverter leg.

328

Breaker

Breaker

Purpose AC circuit breaker opening at zero current

Library Electrical / Switches

Description This component provides an ideal short or open circuit between its two electri-
cal terminals. The switch closes when the controlling signal becomes non-zero.
It opens when both the signal and the current are zero. Therefore, this circuit
breaker can be used to interrupt inductive AC currents.

Parameter Initial conductivity
Initial conduction state of the breaker. The breaker is initially open if the
parameter evaluates to zero, otherwise closed. This parameter may either
be a scalar or a vector corresponding to the implicit width of the compo-
nent. The default value is 0.

Probe Signals Breaker current
The current through the component in amperes (A). A positive current
flows from the left to the right terminal in the above breaker icon.

Breaker conductivity
Conduction state of the internal switch. The signal outputs 0 if the
breaker is open, and 1 if it is closed.

329

14 Component Reference

Brushless DC Machine

Purpose Detailed model of brushless DC machine excited by permanent magnets

Library Electrical / Machines

Description A brushless DC machine is a type of permanent magnet synchronous machine
in which the back electromotive force (EMF) is not sinusoidal but has a more
or less trapezoidal shape. Additionally, the variation of the stator inductance
with the rotor position is not necessarily sinusoidal.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. In the component icon, phase a of the stator
winding is marked with a dot.

Electrical System

La(θe)R ea(θe,ωm)ia

The back EMF voltages are determined by a shape function ke and the me-
chanical rotor speed ωm. The shape function in turn is expressed as a fourier
series of the electrical rotor angle θe:

ex(θe, ωm) = ke,x(θe) · ωm

ke,a(θe) =
∑
n

Kc,n cos(nθe) +Ks,n sin(nθe)

ke,b(θe) =
∑
n

Kc,n cos(nθe −
2πn

3
) +Ks,n sin(nθe −

2πn

3
)

ke,c(θe) =
∑
n

Kc,n cos(nθe +
2πn

3
) +Ks,n sin(nθe +

2πn

3
)

330

Brushless DC Machine

The stator self inductance is also expressed as a fourier series of the electrical
rotor angle. The mutual inductance M between the stator phases is assumed
to be constant. Since the stator windings are star connected, the mutual in-
ductance can simply be subtracted from the self inductance:

La(θe) = L0 −M +
∑
n

Lc,n cos(nθe) + Ls,n sin(nθe)

Electromechanical System

The electromagnetic torque is a superposition of the torque caused by the per-
manent magnet and a reluctance torque caused by the non-constant stator in-
ductance:

Te =
∑

x=a,b,c

ke,xix +
p

2

dLx
dθe

i2x

The cogging torque is again expressed as a fourier series of the electrical rotor
angle:

Tcog(θe) =
∑
n

Tc,n cos(nθe) + Ts,n sin(nθe)

Mechanical System

Mechanical rotor speed:

ω̇m =
1

J
(Te + Tcog(θe)− Fωm − Tm)

Mechanical and electrical rotor angle:

θ̇m = ωm

θe = p · θm

Parameters Back EMF shape coefficients
Fourier coefficients Kc,n and Ks,n of the back EMF shape function ke,a(θe)
in Vs.

Stator resistance
The stator resistance R in ohms (Ω).

Stator inductance
The constant inductance L0 − M and the fourier coefficients Lc,n, Ls,n of
the phase a inductance La(θe) in henries (H).

331

14 Component Reference

Cogging torque coefficients
Fourier coefficients Tc,n, Ts,n of the cogging torque Tcog(θe) in Nm.

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second (s−1).

Initial rotor angle
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in A. Currents flow-
ing into the machine are considered positive.

Back EMF
The back EMF voltages ea, eb, ec in volts (V).

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

Cogging torque
The cogging torque Tcog of the machine in Nm.

References
D. Hanselman, "Brushless permanent magnet motor design, 2nd ed.", The

Writers’ Collective, Mar. 2003.

P. Pillay, R. Krishnan, "Modeling, simulation, and analysis of permanent-
magnet motor drives, Part II: The brushless DC motor drive", IEEE
Trans. on Ind. App., Vol. 25, No. 2, Mar./Apr. 1989.

332

Brushless DC Machine (Simple)

Brushless DC Machine (Simple)

Purpose Simple model of brushless DC machine excited by permanent magnets

Library Electrical / Machines

Description The simplified Brushless DC Machine is a model of a permanent magnet syn-
chronous machine with sinusoidal or trapezoidal back EMF.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. In the component icon, phase a of the stator
winding is marked with a dot.

Electrical System

LR ea(θe,ωm)ia

The back EMF voltages are determined by a shape function ke and the me-
chanical rotor speed ωm. The shape function is a sinusoidal or an ideal trape-
zoidal function scaled with the back EMF constant KE.

ex(θe, ωm) = ke,x(θe) · ωm

Sinusoidal back EMF

e

k
e,a

/6 5 /6 2
K

E

K
E

333

14 Component Reference

Trapezoidal back EMF

e

k
e,a

/6 5 /6 2
K

E

K
E

Electromechanical System

The electromagnetic torque is:

Te =
∑

x=a,b,c

ke,xix

Mechanical System

Mechanical rotor speed:

ω̇m =
1

J
(Te − Fωm − Tm)

Mechanical and electrical rotor angle:

θ̇m = ωm

θe = p · θm

Parameters Back EMF shape
Choose between sinusoidal and trapezoidal back EMF.

Back EMF constant
The back EMF constant KE in Vs.

Stator resistance
The stator resistance R in ohms (Ω).

Stator inductance
The stator inductance L−M in henries (H).

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

334

Brushless DC Machine (Simple)

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second (s−1).

Initial rotor angle
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in A. Currents flow-
ing into the machine are considered positive.

Back EMF
The back EMF voltages ea, eb, ec in volts (V).

Stator flux (dq)
The stator flux linkages Ψd and Ψq in the stationary reference frame in
Vs.

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

References
D. Hanselman, "Brushless permanent magnet motor design, 2nd ed.", The

Writers’ Collective, Mar. 2003.

P. Pillay, R. Krishnan, "Modeling, simulation, and analysis of permanent-
magnet motor drives, Part II: The brushless DC motor drive", IEEE
Trans. on Ind. App., Vol. 25, No. 2, Mar./Apr. 1989.

See also For back EMF shapes other than sinusoidal or trapezoidal, and/or if the sta-
tor inductance L is angle dependent please use the sophisticated model of the
Brushless DC Machine (see page 330). The sophisticated BLDC machine can
be configured as a simple BLDC machine with sinusoidal back EMF if the pa-
rameters are converted as follows:

Kc,n = [0]

335

14 Component Reference

Ks,n = [−KE]

L0−M = L−M

Lc,n = [0]

Ls,n = [0]

For machines with sinusoidal back EMF you may also consider to use the Per-
manent Magnet Synchronous Machine (see page 518). The parameters can be
converted as follows provided that the stator inductance L is independent of
the rotor angle:

[Ld Lq] = [L−M L−M]

ϕ′m = KE/p

336

C-Script

C-Script

Purpose Execute custom C code

Library Control / Functions & Tables

Description The C-Script block allows for custom functionality to be implemented in the
C programming language. For a detailed description of C-Scripts see chapter
“C-Scripts” (on page 195).

The C-Script dialog consists of two tabbed panes that are described below.

Setup

Number of inputs, outputs
A positive integer or a vector of positive integers. The length of the vec-
tor specifies the number of input or output terminals, the elements in the
vector specify the widths of the single terminals. For dynamic sizing set
the width of one or more input terminals to -1; the width will then be de-
termined at simulation start depending on the number of elements in the
signal that is connected to the input port. All occurrences of -1 in the in-
put and output widths and any other data vector will be expanded to the
same width.

Number of cont. states, disc. states, zero-crossings
A positive or zero integer specifying the sizes of the different data vectors
(i.e. continuous and discrete state variables, and zero-crossing signals) that
the C-Script registers with the solver.

Sample time
A scalar or an n × 2 matrix specifying the block sample time(s). The table
below lists the valid parameter values for the different sample time types.
For a detailed description of the sample time types see “Sample Time” (on
page 200).

337

14 Component Reference

Type Value

Continuous [0, 0] or 0

Semi-Continuous [0, -1]

Discrete-Periodic [Tp, To] or Tp Tp: Sample period, Tp > 0

To: Sample offset, 0 ≤ To < Tp

Discrete-Variable [-2, 0] or -2

Direct feedthrough
A vector of zeros and ones specifying the direct feedthrough flags for the
input signals. An input signal has direct feedthrough if you need to access
the current input signal value during the output function call. This has an
influence on the block sorting order and the occurrence of algebraic loops
(see “Block Sorting” on page 29). If the C-Script block has one input termi-
nal, a flag in the vector is applied to the respective single element of the
input signal; if the block has multiple input terminals, a flag is applied to
the whole signal of the respective terminal. You can also specify a single
scalar, which then applies to all input signals of all terminals.

Language standard
The language standard used by the compiler. Possible values are C90, C99
and C11. The default is C99.

Enable GNU extensions
If this box is checked, the compiler enables GNU C language features not
found in ISO standard C. These extensions are disabled by default. For
backward compatibility, the extensions are enabled in models saved with
PLECS 4.0 or older in C-Script blocks using the C99 language standard.

Enable runtime checks
If this box is checked, protective code is added to guard against access
violations when working with block data (i.e. signal values, states, zero-
crossing signals etc.). The C-Script function calls are also wrapped with
protective code to prevent you from violating solver policies such as ac-
cessing input signals in the output function without enabling direct
feedthrough.
It is strongly recommended to leave the runtime checks enabled.

Parameters
A comma-separated list of expressions that are passed as external param-
eters into the C functions. The expressions can reference workspace vari-
ables and must evaluate to scalars, vectors, matrices, 3d-arrays or strings.

338

C-Script

Code

The Code pane consists of a combobox for selecting a particular code section
and a text editor that lets you edit the currently selected code section. For de-
tails on the individual sections see “C-Script Functions” (on page 196). The
different macros that you need to use in order to access block data such as in-
put/output signals and states are listed in “C-Script Macros” (on page 210).

If you have made changes to the C code, it will be compiled when you click
on Apply or OK. Any errors or warnings that occur during compilation are
listed in a diagnostic window. Small badges next to the line numbers indicate
the problematic code lines. If you move the mouse cursor near such a badge, a
tooltip with the diagnostics for that line will appear.

A “Find” dialog for finding and optionally replacing certain text is available
from the context menu or by pressing Ctrl-F. The dialog has an option to
search the current code section only (“This section") or all code sections of the
C-Script (“All sections").

Probe Signals Input i
The ith input signal.

Output i
The ith output signal.

339

14 Component Reference

Capacitor

Purpose Ideal capacitor

Library Electrical / Passive Components

Description This component provides one or more ideal capacitors between its two electri-
cal terminals. If the component is vectorized, a coupling can be modeled be-
tween the internal capacitors. Capacitors may be switched in parallel only if
their momentary voltages are equal.

See section “Configuring PLECS” (on page 41) for information on how to
change the graphical representation of capacitors.

Note A capacitor may not be connected in parallel with an ideal voltage
source. Doing so would create a dependency between an input variable (the
source voltage) and a state variable (the capacitor voltage) in the underlying
state-space equations.

Parameters Capacitance
The value of the capacitor, in farads (F). All finite positive and negative
values are accepted, including 0. The default is 100e-6.

In a vectorized component, all internal capacitors have the same value if
the parameter is a scalar. To specify the capacitances individually use a
vector [C1 C2 . . . Cn] . The length n of the vector determines the compo-
nent’s width:

i1

i2
...

in

 =

C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn

 ·

d
dtv1

d
dtv2

...
d
dtvn

In order to model a coupling between the internal capacitors enter a
square matrix. The size n of the matrix corresponds to the width of the
component:

340

Capacitor

i1

i2
...

in

 =

C1 C1,2 · · · C1,n

C2,1 C2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · Cn

 ·

d
dtv1

d
dtv2

...
d
dtvn

The capacitance matrix must be invertible, i.e. it may not be singular.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the width of
the component. The positive pole is marked with a “+”. The initial voltage
default is 0.

Probe Signals Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

Capacitor current
The current flowing through the capacitor, in amperes (A).

341

14 Component Reference

Clock

Purpose Provide current simulation time

Library Control / Sources

Description The Clock block outputs the current simulation time.

Probe Signal Output
The time signal.

342

Combinatorial Logic

Combinatorial Logic

Purpose Use binary input signals to select one row from truth table

Library Control / Logical

Description The Combinatorial Logic block interprets its input as a vector of boolean val-
ues and outputs a row from the Truth table according to the input values.
For an input vector of width n, the truth table must have 2n rows and the row
number is calculated as r = 1 +

∑
i 2n−iui where ui = 1 if the ith input signal

is greater than 0, ui = 0 otherwise, i.e. the first element of the input vector is
interpreted as the most significant bit and the nth element as the least signifi-
cant bit.

For example, when using a truth table
1.5 0

4 2.5

3 1.5

5.5 0

the output is:

Input Output

[0 0] [1.5 0]

[0 1] [4 2.5]

[1 0] [3 1.5]

[1 1] [5.5 0]

Parameter Truth table
The truth table used to calculate the output. The table must have 2n rows,
and n determines the width of the input signal. The number of columns
determines the width of the output signal.

Probe Signals Input
The input signals.

Output
The output signals.

343

14 Component Reference

Comparator

Purpose Compare two input signals with minimal hysteresis

Library Control / Discontinuous

Description The Comparator compares two input signals. If the non-inverting input is
greater than the inverting input, the output is 1. The output is set to 0 if the
non-inverting input is less than the inverting one. The output does not change
if both inputs are equal.

Probe Signals Input
The input signals.

Output
The output signals.

344

Compare to Constant

Compare to Constant

Purpose Compare the input signal to a constant threshold

Library Control / Logical

Description The Compare to Constant block compares the input signal to a threshold
value. If the comparison is true it outputs 1, otherwise 0. The input signal is
the first argument and the threshold value the second argument for the com-
parison operator.

Parameters Relational operator
Chooses which comparison operation is applied to the input signal and the
threshold value. Available operators are
• equal (==),
• unequal (∼=),
• less (<),
• less or equal (<=),
• greater or equal (>=),
• greater (>).

Threshold value
The value to which the input signal is compared.

Probe Signals Input
The input signals.

Output
The output signal.

345

14 Component Reference

Configurable Subsystem

Purpose Provide subsystem with exchangeable implementations

Library System

Description A configurable subsystem is a subsystem that has multiple, exchangeable con-
figurations. Each subsystem configuration has its own schematic diagram.

All subsystem configurations of the configurable subsystem share the same
input, output and electrical terminals. Once a port element has been added
to one of the internal schematics it becomes available in all other internal
schematics.

By selecting Look under mask from the Subsystem submenu of the Edit
menu or the block’s context menu the schematic view of the configurable sub-
system is opened. The schematic for each configuration can be accessed by
the tabs on top of the schematic view. New configurations can be added and
removed from the context menu of the tab bar, accessible by right-click. A
double-click on a configuration tab allows for the corresponding configuration
to be renamed.

Parameters Configuration
The name of the internal schematic that is used during simulation. The
variable Configuration can be used in the mask initialization commands
to check the current configuration. It contains an integer value starting at
1 for the first configuration.

Additional parameters for the Configurable Subsystem can be created by
masking the block (see “Mask Parameters” (on page 66) for more details).

Probe Signals Probe signals for the Configurable Subsystem can be created by masking the
block (see “Mask Probe Signals” (on page 72) for more details).

346

Constant

Constant

Purpose Generate constant signal

Library Control / Sources

Description

1

The Constant block outputs a constant signal.

The constant value is displayed in the block if it is large enough, otherwise a
default text is shown. To resize the block, select it, then drag one of its selec-
tion handles.

Parameter Value
The constant value. This parameter may either be a scalar or a vector
defining the width of the component. The default value is 1.

Probe Signal Output
The constant signal.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

347

14 Component Reference

Constant Heat Flow

Purpose Generate constant heat flow

Library Thermal

Description The Constant Heat Flow generates a constant heat flow between the two ther-
mal ports. The direction of a positive heat flow through the component is
marked with an arrow.

Parameter Heat flow
The magnitude of the heat flow, in watts (W). The default is 1.

Probe Signal Heat flow
The heat flow in watts (W).

348

Constant Temperature

Constant Temperature

Purpose Provide constant temperature

Library Thermal

Description The Constant Temperature generates a constant temperature difference be-
tween its two thermal connectors or between the thermal connector and the
thermal reference. The temperature difference is considered positive if the ter-
minal marked with a “+” has a higher temperature.

Parameter Temperature
The temperature difference generated by the component, in kelvin (K). The
default is 0.

Probe Signal Temperature
The temperature difference in kelvin (K).

349

14 Component Reference

Controlled Heat Flow

Purpose Generate variable heat flow

Library Thermal

Description The Controlled Heat Flow generates a variable heat flow between the two
thermal ports. The direction of a positive heat flow through the component is
marked with an arrow. The momentary heat flow is determined by the signal
fed into the input of the component.

Parameter Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of thermal measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signal Heat flow
The heat flow in watts (W).

350

Controlled Temperature

Controlled Temperature

Purpose Provide variable temperature

Library Thermal

Description The Controlled Temperature generates a variable temperature difference be-
tween its two thermal connectors or between the thermal connector and the
thermal reference. The temperature difference is considered positive if the ter-
minal marked with a “+” has a higher temperature. The momentary temper-
ature difference is determined by the signal fed into the input of the compo-
nent.

Parameter Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of thermal measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signal Temperature
The temperature difference in kelvin (K).

351

14 Component Reference

Current Source (Controlled)

Purpose Generate variable current

Library Electrical / Sources

Description The Controlled Current Source generates a variable current between its two
electrical terminals. The direction of a positive current through the component
is marked with an arrow. The momentary current is determined by the signal
fed into the input of the component.

Note A current source may not be open-circuited or connected in series to an
inductor or any other current source.

Parameters Discretization behavior
Specifies whether a zero-order hold or a first-order hold is applied to the
input signal when the model is discretized. For details, see “Physical
Model Discretization” (on page 33).

The option Non-causal zero-order hold applies a zero-order hold with
the input signal value from the current simulation step instead of the pre-
vious one. This option can be used to compensate for a known delay of the
input signal.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of electrical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Source current
The source current in amperes (A).

Source voltage
The voltage measured across the source, in volts (V).

Source power
The instantaneous output power of the source, in watts (W).

352

Current Source AC

Current Source AC

Purpose Generate sinusoidal current

Library Electrical / Sources

Description The AC Current Source generates a sinusoidal current between its two elec-
trical terminals. The direction of a positive current is marked with an arrow.
The momentary current i is determined by the equation:

i = A · sin(ω · t+ ϕ)

where t is the simulation time.

If a variable-step solver is used, the solver step size is automatically limited to
ensure that a smooth current waveform is produced.

Note A current source may not be open-circuited or connected in series to an
inductor or any other current source.

Parameters Each of the following parameters may either be a scalar or a vector corre-
sponding to the implicit width of the component:

Amplitude
The amplitude A of the current, in amperes (A). The default is 1.

Frequency
The angular frequency ω, in s−1. The default is 2*pi*50 which corre-
sponds to 50 Hz.

Phase
The phase shift ϕ, in radians. The default is 0.

Probe Signals Source current
The source current in amperes (A).

Source voltage
The voltage measured across the source, in volts (V).

Source power
The instantaneous output power of the source, in watts (W).

353

14 Component Reference

Current Source DC

Purpose Generate constant current

Library Electrical / Sources

Description The DC Current Source generates a constant current between its two electri-
cal terminals. The direction of a positive current through the component is
marked with an arrow.

Note A current source may not be open-circuited or connected in series to an
inductor or any other current source.

Parameter Current
The magnitude of the constant current, in amperes (A). This parameter
may either be a scalar or a vector defining the width of the component.
The default value is 1.

Probe Signals Source current
The source current in amperes (A).

Source voltage
The voltage measured across the source, in volts (V).

Source power
The instantaneous output power of the source, in watts (W).

354

D Flip-flop

D Flip-flop

Purpose Implement edge-triggered flip-flop

Library Control / Logical

Description The D flip-flop sets its output Q to the value of its input D when an edge on
the clock input is detected. The behavior is shown in the following truth table:

D Clk Q /Q

0 0 No change No change

0 1 No change No change

1 0 No change No change

1 1 No change No change

0 Triggering edge 0 1

1 Triggering edge 1 0

The input D is latched, i.e. when a triggering edge in the clock signal is de-
tected the value of D from the previous simulation step is used to set the out-
put. In other words, D must be stable for at least one simulation step before
the flip-flop is triggered by the clock signal.

Parameters Trigger edge
The direction of the edge on which the D input is read.

Initial state
The state of the flip-flop at simulation start.

Probe Signals D
The input signal D.

Clk
The clock input signal.

Q
The output signals Q.

/Q
The output signals /Q.

355

14 Component Reference

Data Type

Purpose For code generation only. Cast the input signal to the specified data type.

Library Control / Math

Description During code generation, this block prepends a cast operator to the expression
of the input signal. If the input signal already has the specified data type, this
block does nothing.

Parameters Data type
The data type of the output signal. See “Data Types” (on page 261).

356

DC Machine

DC Machine

Purpose Simple model of DC machine

Library Electrical / Machines

Description The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. In the component icon, the positive poles of ar-
mature and field winding are marked with dots.

Electrical System

LaRa

Ea

Lf Rf
va

+

−

+

−
vf

if

ia

Electromagnetic torque:

Te = Laf · if · ia
Induced voltage of the armature winding:

Ea = Laf · if · ωm

Mechanical System

ω̇m =
1

J
(Te − Fωm − Tm)

Parameters Armature resistance
Armature winding resistance Ra in ohms (Ω).

Armature inductance
Armature winding inductance La in henries (H).

Field resistance
Field winding resistance Rf in ohms (Ω).

357

14 Component Reference

Armature inductance
Field winding inductance Lf in henries (H).

Field-armature mutual inductance
Field-armature mutual inductance Laf in henries (H).

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second (s−1).

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Initial armature current
Initial current ia,0 in the armature winding in amperes (A).

Initial field current
Initial current if,0 in the field winding in amperes (A).

Probe Signals Armature current
The current ia in the armature winding, in amperes (A).

Field current
The current if in the field winding, in amperes (A).

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

358

Dead Zone

Dead Zone

Purpose Output zero while input signal is within dead zone limits

Library Control / Discontinuous

Description The Dead Zone block outputs zero while the input is within the limits of the
dead zone. When the input signal is outside of the dead zone limits, the out-
put signal equals the input signal minus the nearest dead zone limit.

Parameters Lower dead zone limit
The lower limit of the dead zone.

Upper dead zone limit
The upper limit of the dead zone.

Probe Signals Input
The block input signal.

Output
The block output signal.

359

14 Component Reference

Delay

Purpose Delay input signal by given number of samples

Library Control / Discrete

Description The Delay block delays the input signal by N sample periods.

Parameters Delay order
The number of delay periods applied to the input signal.

Initial condition
A scalar, vector or matrix that defines the initial values of the internal
states. The number of rows must be 1 or equal to the width of the in-
put signal; the number of columns must be 1 or equal to the delay order.
Scalar dimensions are expanded as needed.

Sample time
The length of the sample period in sec. See also the Discrete-Periodic
sample time type in section “Sample Times” (on page 36).

Probe Signals Input
The input signal.

Output
The delayed output signal.

360

Diode

Diode

Purpose Ideal diode with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Diode is a semiconductor device controlled only by the voltage across it
and the current through the device. The Diode model is basically an ideal
switch that closes when the voltage between anode and cathode becomes pos-
itive and opens when the current through the component becomes negative.
In addition to the ideal switch, a forward voltage and an on-resistance may be
specified. These parameters may either be scalars or vectors corresponding to
the implicit width of the component. If unsure set both values to 0.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
diode is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Vf +Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Note Under blocking conditions the diode voltage is negative. Hence you
should define the turn-on and turn-off loss tables for negative voltages. See
chapter “Diode Losses” (on page 141) for more information.

361

14 Component Reference

Probe Signals Diode voltage
The voltage measured between anode and cathode.

Diode current
The current through the diode flowing from anode to cathode.

Diode conductivity
Conduction state of the internal switch. The signal outputs 0 when the
diode is blocking, and 1 when it is conducting.

Diode junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Diode conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Diode switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

362

Diode with Reverse Recovery

Diode with Reverse Recovery

Purpose Dynamic diode model with reverse recovery

Library Electrical / Power Semiconductors

Description This component is a behavioral model of a diode which reproduces the ef-
fect of reverse recovery. This effect can be observed when a forward biased
diode is rapidly turned off. It takes some time until the excess charge stored
in the diode during conduction is removed. During this time the diode rep-
resents a short circuit instead of an open circuit, and a negative current can
flow through the diode. The diode finally turns off when the charge is swept
out by the reverse current and lost by internal recombination.

Note

• Due to the small time-constant introduced by the turn-off transient a stiff
solver is recommended for this device model.

• If multiple diodes are connected in series the off-resistance may not be infi-
nite.

The following figure illustrates the relationship between the diode parameters
and the turn-off current waveform. If0 and dIr/dt denote the continuous for-
ward current and the rated turn-off current slope under test conditions. The
turn-off time trr is defined as the period between the zero-crossing of the cur-
rent and the instant when it becomes equal to 10% of the maximum reverse
current Irrm. The reverse recovery charge is denoted Qrr. Only two out of the
three parameters trr, Irrm, and Qrr need to be specified since they are linked
geometrically. The remaining parameter should be set to 0. If all three param-
eters are given, Qrr is ignored.

The equivalent circuit of the diode model is shown below. It is composed of a
resistance, and inductance, and a controlled current source which is linearly
dependent on the inductor voltage. The values of these internal elements are
automatically calculated from the diode parameters.

Parameters Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
diode is conducting. The default is 0.

363

14 Component Reference

−I
rrm

/10

t
rr

I
f0

dI
r
/dt

Q
rr

t

i
D

−I
rrm

RL vL K · vL

Ron

Roff

Lrr

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple diodes are connected in
series.

Continuous forward current
The continuous forward current If0 under test conditions.

Current slope at turn-off
The turn-off current slope dIr/dt under test conditions.

Reverse recovery time
The turn-off time trr under test conditions.

Peak recovery current
The absolute peak value of the reverse current Irrm under test conditions.

364

Diode with Reverse Recovery

Reverse recovery charge
The reverse recovery charge Qrr under test conditions. If both trr and Irrm
are specified, this parameter is ignored.

Lrr
This inductance acts as a probe measuring the di/dt. It should be set to a
very small value. The default is 10e-10.

Probe Signals Diode voltage
The voltage measured between anode and cathode.

Diode current
The current through the diode flowing from anode to cathode.

Diode conductivity
Conduction state of the internal switch. The signal outputs 0 when the
diode is blocking, and 1 when it is conducting.

References
A. Courtay, "MAST power diode and thyristor models including automatic

parameter extraction", SABER User Group Meeting Brighton, UK, Sept.
1995.

365

14 Component Reference

Diode Rectifier (3ph)

Purpose 3-phase diode rectifier

Library Electrical / Converters

Description Implements a three-phase rectifier based on the Diode model (see page 361).
The electrical circuit for the rectifier is given below:

D2

a

b

c

D1

D4

D3

D6

D5

Parameters For a description of the parameters see the documentation of the Diode (on
page 361).

Probe Signals The Diode Rectifier provides six probe signals, each a vector containing the
appropriate quantities of the six individual diodes: voltage, current, conduc-
tivity, conduction loss and switching loss. The vector elements are ordered ac-
cording to the natural sequence of commutation.

366

Discrete Fourier Transform

Discrete Fourier Transform

Purpose Perform discrete Fourier transform on input signal

Library Control / Discrete

Description This block calculates the discrete Fourier transform of a periodic input signal
based on discrete samples. The sample time, the number of samples and the
harmonic order(s) can be specified. The fundamental frequency f1 of the run-
ning window is:

f1 =
1

sample time× number of samples
.

The outputs of the block are the magnitude and phase angle of the specified
harmonics.

If you specify more than one harmonic, the outputs will be vectors with the
corresponding width. Alternatively you can specify a single harmonic and feed
a vector signal into the block.

Parameters Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Number of samples
The number of samples used to calculate the Fourier transform.

Harmonic orders n
A scalar or vector specifying the harmonic component(s) you are interested
in. Enter 0 for the dc component, 1 for the fundamental component, etc.
This parameter should be scalar if the input signal is a vector.

Probe Signals Input
The input signal.

Magnitude
The first output signal, i.e. the computed magnitude.

Phase
The second output signal, i.e. the computed phase angle, in radians.

367

14 Component Reference

Discrete Integrator

Purpose Discrete integration of the input signal

Library Control / Discrete

Description The Discrete Integrator block outputs the integral of its input signal at the
current sample time step. The output signal may have an upper and lower
limit. It can be reset to its initial value by an external trigger signal.

Integration Methods

You can choose between three integration methods using the Integration
method parameter: Forward Euler, Backward Euler and Trapezoidal. The
output and update equations for these methods are listed below:

Forward Euler

First simulation step:

y[0] = x[0]

x[1] = y[0]

Subsequent simulation steps:

y[k] = x[k] + T · u[k − 1]

x[k + 1] = y[k]

Backward Euler

First simulation step:

y[0] = x[0]

x[1] = y[0]

Subsequent simulation steps:

y[k] = x[k] + T · u[k]

x[k + 1] = y[k]

368

Discrete Integrator

Trapezoidal

First simulation step:

y[0] = x[0]

x[1] = y[0]

Subsequent simulation steps:

y[k] = x[k] +
T

2
· (u[k − 1] + u[k])

x[k + 1] = y[k]

In the above equations, if the block has a fixed-step discrete sample time (ei-
ther inherited or specified explicitly), T equals the sample period. If the block
is executed within a triggered subsystem, T equals the time span between the
previous and the current trigger.

The first simulation step refers to the first time the block executes after a sim-
ulation has been started from the initial block parameters (as opposed to a
stored system state) or – if the block is executed within an enabled subsys-
tem – after the block has been enabled. If the block is executed within a trig-
gered subsystem, the first execution after simulation start is always treated as
a first simulation step even if the simulation is restarted from a stored system
state because the value of T cannot be determined in this case.

Note If the Backward Euler or Trapezoidal integration method is used, the
input signal has direct feedthrough on the output signal.

Reset Behavior

The integrator may be reset to its initial condition by an external input signal.
This is controlled by the External reset parameter. The available options are
rising/falling/either edge or level as described below:

369

14 Component Reference

Rising Edge Reset

The block output and state are reset to the initial condition if the current re-
set input value is non-zero and the previous reset input value was zero.

Falling Edge Reset

The block output and state are reset to the initial condition if the current re-
set input value is zero and the previous reset input value was non-zero.

Either Edge Reset

The block output and state are reset to the initial condition if the current re-
set input value is non-zero and the previous reset input value was zero or if
the current reset input value is zero and the previous reset input value was
non-zero.

Level Reset

The block output and state are reset to and held at the initial condition while
the current reset input value is non-zero.

Note Both the external reset input and the initial condition input have direct
feedthrough on the output signal. Therefore, feeding back the output signal to
create the reset signal or an initial value will create an algebraic loop. This can
be avoided by using the state port instead.

Parameters External reset
The behaviour of the external reset input. See Reset Behavior above.

Initial condition source
Specifies whether the initial condition is provided via the Initial condi-
tion parameter (internal) or via an input signal (external).

Initial condition
The initial condition of the integrator. The value may be a scalar or a vec-
tor corresponding to the width of the component. This parameter is shown
only if the Initial condition source parameter is set to internal.

370

Discrete Integrator

Show state port
Specifies whether to show an additional state output port. The state port
is updated at a slightly different point in the block execution order (i.e. be-
fore the reset and initial condition inputs are evaluated) and may therefore
be used to calculate an input signal for the external reset input or the ini-
tial condition input.

Upper saturation limit
An upper limit for the output signal. If the value is inf the output signal
is unlimited.

Lower saturation limit
A lower limit for the output signal. If the value is -inf the output signal
is unlimited.

Integration method
The method used to integrate the input signal. See Integration Methods
above.

Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Probe Signal State
The internal state of the integrator.

371

14 Component Reference

Discrete Mean Value

Purpose Calculate running mean value of input signal

Library Control / Discrete

Description This block calculates the running mean of the input signal based on discrete
samples. The sample time and the number of samples can be specified. The
block is implemented with a shift register. The output of the block is the sum
of all register values divided by the number of samples.

Parameters Initial condition
The initial condition describes the input signal before simulation start. If
the input is a scalar signal the parameter can either be a scalar or a col-
umn vector. The number of elements in the vector must match the value of
the parameter Number of samples - 1. If input and output are vectorized
signals a matrix can be used. The number of rows must be 1 or match the
number of input signals. The default value of this parameter is 0.

Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Number of samples
The number of samples used to calculate the mean value.

Probe Signals Input
The input signal.

Mean
The output signal, i.e. the computed mean value.

372

Discrete RMS Value

Discrete RMS Value

Purpose Calculate root mean square (RMS) value of input signal

Library Control / Discrete

Description This block calculates the RMS value of a periodic input signal based on dis-
crete samples. The sample time and the number of samples can be specified.
The fundamental frequency f of the running window is

f =
1

sample time× number of samples
.

The Discrete RMS Value block is implemented with the Discrete Mean Value
block (see page 372).

Parameters Initial condition
The initial condition describes the input signal before simulation start. If
the input is a scalar signal the parameter can either be a scalar or a col-
umn vector. The number of elements in the vector must match the value of
the parameter Number of samples - 1. If input and output are vectorized
signals a matrix can be used. The number of rows must be 1 or match the
number of input signals. The default value of this parameter is 0.

Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Number of samples
The number of samples used to calculate the RMS value.

373

14 Component Reference

Discrete State Space

Purpose Implement discrete time-invariant system as state-space model

Library Control / Discrete

Description The Discrete State Space block models a state space system of the form
xi+1 = Axi + Bui, yi = Cxi + Dui, where xi is the state vector at sample time
step i, u is the input vector, and y is the output vector.

Parameters A,B,C,D
The coefficient matrices for the discrete state space system. The dimen-
sions for the coefficient matrices must conform to the dimensions shown in
the diagram below:

where n is the number of states, m is the width of the input signal and p
is the width of the output signal.

Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Initial condition
A vector of initial values for the state vector, x.

Probe Signals Input
The input vector, u.

Output
The output vector, y.

374

Discrete Total Harmonic Distortion

Discrete Total Harmonic Distortion

Purpose Calculate total harmonic distortion (THD) of input signal

Library Control / Discrete

Description This block calculates the total harmonic distortion of a periodic input signal
based on discrete samples. The sample time and the number of samples can
be specified. The THD is defined as:

THD =

√√√√ ∑
ν≥2

U2
ν

U2
1

=

√
U2

rms − U2
0 − U2

1

U2
1

where Uν is the RMS value of the νth harmonic of the input signal and Urms is
its overall RMS value. The fundamental frequency f1 of the running window
is

f1 =
1

sample time× number of samples
.

Parameters Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Number of samples
The number of samples used to calculate the THD.

375

14 Component Reference

Discrete Transfer Function

Purpose Model discrete system as transfer function

Library Control / Discrete

Description The Discrete Transfer Function models a discrete time-invariant system that
is expressed in the z-domain:

Y (z)

U(z)
=
nnz

n + · · ·+ n1z + n0

dnzn + · · ·+ d1z + d0

The transfer function is displayed in the block if it is large enough, otherwise
a default text is shown. To resize the block, select it, then drag one of its se-
lection handles.

Parameters Numerator coefficients
A vector of the z term coefficients [nn . . . n1, n0] for the numerator, written
in descending order of powers of z. For example, the numerator z3 + 2z
would be entered as [1,0,2,0].
The output of the Transfer Function is vectorizable by entering a matrix
for the numerator.

Denominator coefficients
A vector of the z term coefficients [dn . . . d1, d0] for the denominator, written
in descending order of powers of z.

Note The order of the denominator (highest power of z) must be greater than
or equal to the order of the numerator.

Sample time
The time interval between samples. See also the Discrete-Periodic sam-
ple time type in section “Sample Times” (on page 36).

Initial condition
The initial condition vector of the internal states of the Transfer Function
in the form [xn . . . x1, x0]. The initial conditions must be specified for the
controller normal form, depicted below for the transfer function:

Y (z)

U(z)
=
n2z

2 + n1z + n0

d2z2 + d1z + d0

376

Discrete Transfer Function

a1

a0

a2

b0

b1

b2z-1

++

+++−

++

x1 x0 Y(z)U(z)
z-1

ZOH

where

bi = di
dn

for i < n

bn = 1
dn

ai = ni − nndi
dn

for i < n

an = nn

For the normalized transfer function (with nn = 0 and dn = 1) this simpli-
fies to bi = di and ai = ni.

Probe Signals Input
The input signal.

Output
The output signal.

377

14 Component Reference

Display

Purpose Display signal values in the schematic

Library System

Description The display block shows the numeric value of the input signal. The value is
updated while the simulation is running.

Parameters Notation
This parameter determines if the value of the signal is displayed in deci-
mal or scientific notation, e.g. “0.123” or “1.23e-1”, respectively.

Precision
The precision determines the number of digits after the dot. The allowed
range of this parameter is 0 to 16.

378

DLL

DLL

Purpose Interface with externally generated dynamic-link library

Library Control / Functions & Tables

Description The DLL block allows you to load a user generated DLL. The DLL may be im-
plemented in any programming language on any development environment
that the system platform supports. For convenience, all code snippets in this
description are given in C.

The DLL must supply two functions, plecsSetSizes and plecsOutput. Addi-
tionally it may implement the functions plecsStart and plecsTerminate.

The complete DLL interface is described in the file
include/plecs/DllHeader.h in the PLECS installation directory. This
file should be included when implementing the DLL.

void plecsSetSizes(struct SimulationSizes* aSizes)

This function is called once during the initialization of a new simulation.

The parameter struct SimulationSizes is defined as follows:

struct SimulationSizes {
int numInputs;
int numOutputs;
int numStates;
int numParameters;

};

In the implementation of plecsSetSizes the DLL has to set all the fields of
the supplied structure.

numInputs
The width of the input signal that the DLL expects. The length of the
input array in the SimulationState struct is set to this value.

numOutputs
The number of outputs that the DLL generates. The width of the out-
put signal of the DLL block and the length of the output array in the
SimulationState struct is set to this value.

379

14 Component Reference

numStates
The number of discrete states that the DLL uses. The length of the states
array in the SimulationState struct is set to this value.

numParameters
The length of the parameter vector that the DLL expects. A vector with
numParameters elements must be supplied in the Parameters field of the
component parameters of the DLL block. The parameters are passed in
the parameters array in the SimulationState struct.

void plecsOutput(struct SimulationState* aState)

This function is called whenever the simulation time reaches a multiple of the
Sample time of the DLL block.

The parameter struct SimulationState is defined as follows:

struct SimulationState {
const double* const inputs;
double* const outputs;
double* const states;
const double* const parameters;
const double time;
const char* errorMessage;
void* userData;

};

inputs
The values of the input signal for the current simulation step. The values
are read-only. The array length is the value of the numInputs field that
was set in the plecsSetSizes method.

outputs
The output values for the current simulation step. These values must be
set by the DLL. The array length is the value of the numOutputs field that
was set in the plecsSetSizes method.

states
The values of the discrete states of the DLL. These values can be read and
modified by the DLL. The array length is the value of the numStates field
that was set in the plecsSetSizes method.

parameters
The values of the parameters that were set in the Parameters field in the
component parameters of the DLL block. The values are read-only. The

380

DLL

array length is the value of the numParameters field that was set in the
plecsSetSizes method.

time
The simulation time of the current simulation step.

errorMessage
The DLL may indicate an error condition by setting an error message. The
simulation will be stopped after the current simulation step.

userData
A pointer to pass data from one call into the DLL to another. The value is
not touched by PLECS.

void plecsStart(struct SimulationState* aState)

This function is called once at the start of a new simulation. It may be used
to set initial outputs or states, initialize internal data structures, acquire re-
sources etc.

The values of the inputs array in the SimulationState struct are undefined
in the plecsStart function.

void plecsTerminate(struct SimulationState* aState)

This function is called once when the simulation is finished. It may be used to
free any resources that were acquired by the DLL.

Note The processor architecture of the DLL must match the processor archi-
tecture of PLECS. If, for example, a 32-bit version of PLECS is used on a 64-bit
Windows machine, a 32-bit DLL must be built. The processor architecture used
by PLECS is displayed in the About PLECS ... dialog, accessible from the File
menu.

Parameters Filename
The filename of the DLL. If the filename does not contain the full path
of the DLL, the DLL is searched relative to the directory containing the
model file. If no DLL is found with the given filename, a platform specific
ending will be attached to the filename and the lookup is retried. The end-
ings and search order are listed in the table below.

381

14 Component Reference

Platform Filename search order

Windows 32-bit filename, filename.dll, filename_32.dll

Windows 64-bit filename, filename.dll, filename_64.dll

macOS 32-bit filename, filename.dylib, filename_32.dylib

macOS 64-bit filename, filename.dylib, filename_64.dylib

Linux 64-bit filename, filename.so, filename_64.so

Sample time
Determines the time steps, at which the output function of the DLL is
called. Valid inputs are a Discrete-Periodic or an Inherited sample
time. See also section “Sample Times” (on page 36).

Output delay
Allows you to delay the output in each simulation step. This is useful
when modeling, for example, a DSP that needs a certain processing time
to calculate the new outputs. The output delay must be smaller than the
sample time. If the output delay is a positive number, the DLL block has
no direct feedthrough, i.e. its outputs can be fed back to its inputs with-
out causing an algebraic loop. If an inherited sample time is specified, the
output delay must be zero.

Parameters
Array of parameter values to pass to the DLL. The length of the array
must match the value of the numParameters field that the DLL sets in the
plecsSetSizes method.

Probe Signals Input
The input signal.

Output
The output signal.

382

Double Switch

Double Switch

Purpose Changeover switch with two positions

Library Electrical / Switches

Description This changeover switch provides an ideal short or open circuit. If the input
signal is zero the switch is in the upper position. For all other values the
switch is in the lower position.

Parameter Initial position
Initial position of the switch. The switch is initially in the upper position
if the parameter evaluates to zero. For all other values it is in the lower
position. This parameter may either be a scalar or a vector corresponding
to the implicit width of the component. The default value is 0.

Probe Signal Switch position
State of the internal switches. The signal outputs 0 if the switch is in the
upper position, and 1 if it is in the lower position.

383

14 Component Reference

Edge Detection

Purpose Detect edges of pulse signal in given direction

Library Control / Logical

Description The output of the edge detection block changes to 1 when an edge is detected
on the input signal. It returns to 0 in the following simulation step.

The block allows you to detect the following edges:

rising
The output is set to 1 when the input changes from 0 to a non-zero value.

falling
The output is set to 1 when the input changes from a non-zero value to 0.

either
The output is set to 1 when the input changes from 0 to a non-zero value
or vice versa.

Parameter Edge direction
The direction of the edges to detect, as described above.

Probe Signals Input
The input signal.

Output
The output signal.

384

Electrical Algebraic Component

Electrical Algebraic Component

Purpose Define an algebraic constraint in terms of voltage and current

Library Electrical / Passive Components

Description The Electrical Algebraic Component enforces an arbitrary algebraic constraint
involving voltage and current. The small dot marks the positive terminal.

The output signal “v” measures the voltage across the component from the
positive to the negative terminal. The output signal “i” measures the current
flowing into the positive terminal. The two output signals must affect the in-
put signal “0” by means of a direct feedthrough path. The component ensures
that the input signal is zero at all times.

The direct feedthrough path defines a function f(v, i), which in turn implicitly
determines the current-voltage characteristic of the component through the
constraint f(v, i) = 0. For instance, the choice f(v, i) := v − R · i causes the
Electrical Algebraic Component to act as an ideal resistor with resistance R.

The Electrical Algebraic Component can be vectorized. The three signals “v”,
“i” and “0” must have the same width.

By way of illustration, the following schematic shows a possible implementa-
tion of a variable resistor:

Note The Electrical Algebraic Component creates an algebraic loop. See sec-
tion “Block Sorting” (on page 29) for more information on algebraic loops.

385

14 Component Reference

Probe Signals Component voltage
The voltage measured across the component from the positive to the nega-
tive terminal.

Component current
The current flowing into the positive terminal of the component.

Component power
The power consumed by the component.

386

Electrical Ground

Electrical Ground

Purpose Connect to common electrical ground

Library System

Description The ground block implements an electrical connection to the ground.

Note PLECS does not require a circuit to be grounded at one or more points.
The ground block just provides a convenient means to connect distant points to
a common potential.

387

14 Component Reference

Electrical Label

Purpose Connect electrical potentials by name

Library System

Description The Electrical Label block provides an electrical connection between other
Electrical Label blocks with identical tag names within the same scope.

The parameter dialog of the Electrical Label block provides a list of links to
the corresponding blocks, i.e. all other Electrical Label blocks with a match-
ing tag name and scope. Note that the list is not updated until you click the
Apply button after changing the tag name or scope.

Parameters Tag name:
The tag name is used to find other matching Electrical Label blocks to con-
nect to.

Scope:
The scope specifies the search depth for the matching Electrical Label
blocks. Using the value Global the complete PLECS circuit is searched.
When set to Schematic only the schematic containing the Electrical Label
block is searched. The setting Masked Subsystem causes a lookup within
the hierarchy of the masked subsystem in which the block is contained. If
the block is not contained in a masked subsystem a global lookup is done.

388

Electrical Model Settings

Electrical Model Settings

Purpose Configure settings for an individual electrical model.

Library Electrical / Model Settings

Description The Electrical Model Settings block lets you configure parameter settings that
influence the code generation for a particular electrical system, see also “Code
Generation for Physical Systems” (on page 257).

The block affects the electrical circuit that it is attached to by its electrical
terminal. At most one Model Settings block may be attached to an individual
state-space system. An electrical model can be split into multiple state-space
systems if the underlying model equations are fully decoupled. See also the
options Enable state-space splitting and Display state-space splitting in
the “Simulation Parameters” (on page 103).

Parameters Switching algorithm
This parameter allows you two choose between two algorithms to deter-
mine the switch conduction states in the generated code. See “Switching
Algorithm” (on page 259) for details.

Matrix coding style
This setting allows you to specify the format used for storing the state-
space matrices for a physical model. When set to sparse, only the non-
zero matrix entries and their row and column indices are stored. When
set to full, matrices are stored as full m × n arrays. When set to full
(inlined), the matrices are additionally embedded in helper functions,
which may enable the compiler to further optimize the matrix-vector-
multiplications at the cost of increased code size.

Topologies
This parameter lets you specify a matrix containing the combinations of
switch conduction states, for which code should be generated, see also “Re-
ducing the Code Size” (on page 258). The columns represent the switch
elements of the physical model and each row represents one combination
of switch states (zero for an open switch and non-zero for a closed switch).

The default is an empty matrix [], which means that all possible combina-
tions are included.

389

14 Component Reference

Electrical Port

Purpose Add electrical connector to subsystem

Library System

Description Electrical ports are used to establish electrical connections between a
schematic and the subschematic of a subsystem (see page 603). If you copy
an Electrical Port block into the schematic of a subsystem, a terminal will be
created on the subsystem block. The name of the port block will appear as the
terminal label. If you choose to hide the block name, the terminal label will
also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by
using the middle mouse button.

Electrical Ports in a Top-Level Schematic

In PLECS Blockset, if an Electrical Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding elec-
trical terminal, which may be connected with other electrical terminals of the
same or a different PLECS Circuit block. The Electrical Port is also assigned
a unique physical port number. Together with the parameter Location on
circuit block the port number determines the position of the electrical ter-
minal of the PLECS Circuit block.

For compatibility reasons you can also place an Electrical Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Width
The width of the connected wire. The default auto means that the width is
inherited from connected components.

Port number
If an Electrical Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

Location on circuit block
If an Electrical Port is placed in a top-level schematic in PLECS Block-
set, this parameter specifies the side of the PLECS Circuit block on which

390

Electrical Port

the corresponding terminal appears. By convention, left refers to the side
on which also input terminals are shown, and right refers to the side on
which also output terminals are shown.

391

14 Component Reference

Enable

Purpose Control execution of an atomic subsystem

Library System

Description The Enable block is used in an atomic subsystem (see “Virtual and Atomic
Subsystems” on page 603) to create an enabled subsystem. When you copy an
Enable block into the schematic of a subsystem, a corresponding enable ter-
minal will be created on the Subsystem block. In order to move this terminal
around the edges of the Subsystem block, hold down the Shift key while drag-
ging the terminal with the left mouse button or use the middle mouse button.

An enabled subsystem is executed while the enable signal is non-zero. The
enable signal may be a vector signal. In this case the enabled subsystem is
executed while any enabled signal is non-zero.

If the sample time of the Subsystem block is not inherited, the enable signal
will be evaluated only at the instants specified by the sample time parameter.

Note An enabled subsystem may not contain any physical components.

Parameters Width
The width of the enable signal. The default auto means that the width is
inherited from connected blocks.

Show output port
When this parameter is set to on, the Enable block shows an output termi-
nal for accessing the enable signal within the subsystem.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signal Output
The output signal of the Enable block.

392

Flux Rate Meter

Flux Rate Meter

Purpose Output the measured rate-of-change of magnetic flux

Library Magnetic

Description The Flux Rate Meter measures the rate-of-change Φ̇ of the magnetic flux
through the component and provides it as a signal at the output. The direc-
tion of a positive flux is indicated with a small arrow in the component sym-
bol. The output signal can be made accessible in Simulink with an Output
block (see page 583) or by dragging the component into the dialog box of a
Probe block.

The magnetic flux Φ cannot be measured directly in the circuit. However, most
permeance components provide the magnetic flux as a probe signal.

Note The Flux Rate Meter is ideal, i.e. it has infinite internal permeance.
Hence, if multiple Flux Rate Meters are connected in parallel the flux through
an individual meter is undefined. This produces a run-time error.

Probe Signal Flux rate
The rate-of-change Φ̇ of magnetic flux flowing through the component, in
Wb/s or V.

393

14 Component Reference

Force (Constant)

Purpose Generate constant force

Library Mechanical / Translational / Sources

Description The Constant Force generates a constant force between its two flanges. The
direction of a positive force is indicated by the arrow.

Note A force source may not be left unconnected or connected in series with a
spring or any other force source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Force
The magnitude of the torque, in Newton (N). The default value is 1.

Probe Signals Force
The generated force, in Newton (N).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in m

s .

394

Force (Controlled)

Force (Controlled)

Purpose Generate variable force

Library Mechanical / Translational / Sources

Description The Controlled Force generates a variable force between its two flanges. The
direction of a positive force is indicated by the arrow. The momentary force is
determined by the signal fed into the input of the component.

Note A force source may not be left unconnected or connected in series with a
spring or any other force source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input
variable from the state-space equations and substitute it with the corre-
sponding output variables. The default is off.

Probe Signals Force
The generated force, in Newton (N).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in m

s .

395

14 Component Reference

Force Sensor

Purpose Output measured force as signal

Library Mechanical / Translational / Sensors

Description The Force Sensor measures the force between its two flanges and provides it
as a signal at the output of the component. A force flow from the unmarked
flange towards the flange marked with a dot is considered positive.

Note A force sensor is ideally rigid. Hence, if multiple force sensors are con-
nected in parallel the force measured by an individual sensor is undefined. This
produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Probe Signal Force
The measured force, in Newton (N).

396

Fourier Series

Fourier Series

Purpose Synthesize periodic output signal from Fourier coefficients

Library Control / Functions & Tables

Description

Fourier
Series

The Fourier Series block calculates the series

y =
a0

2
+
∑
n

an · cos(nx) + bn · sin(nx)

as a function of the input signal x.

Parameters Fourier coefficients
The coefficients a0, an, and bn of the fourier series. The vectors an and bn
must have the same length.

Probe Signals Input
The input signal.

Output
The output signal.

397

14 Component Reference

Function

Purpose Apply arbitrary arithmetic expression to scalar or vectorized input signal

Library Control / Functions & Tables

Description

f (u)

The Function block applies an arithmetic expression specified in C language
syntax to its input. The input may be a scalar or vectorized continuous signal,
the output is always a scalar continuous signal. The expression may consist of
one or more of the following components:

• u — the input of the block. If the input is vectorized, u(i) or u[i] repre-
sents the ith element of the vector. To access the first element, enter u(1),
u[1], or u alone.

• Brackets
• Numeric constants, including pi

• Arithmetic operators (+ - * / ˆ)
• Relational operators (== != > < >= <=)
• Logical operators (&& || !)
• Mathematical functions — abs, acos, asin, atan, atan2, cos, cosh, exp, log,

log10, max, min, mod, pow, sgn, sin, sinh, sqrt, tan, and tanh.
• Workspace variables

Parameter Expression
The expression applied to the input signal, in C language syntax.

Probe Signals Input
The input signal.

Output
The output signal.

398

Gain

Gain

Purpose Multiply input signal by constant

Library Control / Math

Description The Gain block multiplies the input signal with the gain value. The multipli-
cation can either be an element-wise (K · u) or a matrix multiplication (K ∗ u).

Parameters Gain
The gain value to multiply with the input signal. For element-wise multi-
plication the gain value can be a scalar or a vector matching the width of
the input signal. For matrix multiplication the gain value can be a scalar,
a vector or a matrix which has as many columns as the width of the input
signal.

Multiplication
Specifies whether element-wise (K · u) or matrix multiplication (K ∗ u)
should be used.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signals Input
The input signal.

Output
The output signal.

399

14 Component Reference

Gear

Purpose Ideal gear

Library Mechanical / Rotational / Components

Description The Gear models an ideal gearbox with two shafts rotating in the same direc-
tion. The shaft moving with ω2 is marked with a dot. The relation between
the torques and angular speeds of the two shafts is described with the follow-
ing equations:

ω2 = g · ω1

τ1 = g · τ2

where g is the gearbox ratio.

Parameter Gear ratio
The gearbox ratio g. A negative gearbox ratio will cause the shafts to ro-
tate in opposite directions.

400

GTO

GTO

Purpose Ideal GTO with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Gate Turn Off Thyristor can also be switched off via the gate. Like a nor-
mal thyristor it closes when the voltage between anode and cathode is positive
and a positive gate signal is applied. It opens when the current becomes nega-
tive or the gate signal becomes negative.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
GTO is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the GTO. The GTO is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Vf +Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals GTO voltage
The voltage measured between anode and cathode.

GTO current
The current through the GTO flowing from anode to cathode.

401

14 Component Reference

GTO gate signal
The gate input signal of the GTO.

GTO conductivity
Conduction state of the internal switch. The signal outputs 0 when the
GTO is blocking, and 1 when it is conducting.

GTO junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

GTO conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

GTO switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

402

GTO (Reverse Conducting)

GTO (Reverse Conducting)

Purpose Ideal GTO with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of a Gate Turn Off Thyristor has an integrated anti-parallel diode.
The diode is usually included in power GTO packages.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Initial conductivity
Initial conduction state of the GTO. The GTO is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 115) and “Losses of Semiconductor Switch with Diode” (on page 142)
for more information.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals Device voltage
The voltage measured between anode and cathode.

Device current
The current through the device flowing from anode to cathode.

Device gate signal
The gate input signal of the device.

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the
device is blocking, and 1 when it is conducting.

403

14 Component Reference

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

404

Heat Flow Meter

Heat Flow Meter

Purpose Output measured heat flow as signal

Library Thermal

Description

W

The Heat Flow Meter measures the heat flow through the component and pro-
vides it as a signal at the output. The direction of a positive heat flow is indi-
cated by the small arrow at one of the thermal ports. The output signal can
be made accessible in Simulink with a Output block (see page 583) or by drag-
ging the component into the dialog box of a Probe block.

Probe Signal Measured heat flow
The measured heat flow in watts (W).

405

14 Component Reference

Heat Sink

Purpose Isotherm environment for placing components

Library Thermal

Description The Heat Sink absorbs the thermal losses dissipated by the components
within its boundaries. At the same time it defines an isotherm environment
and propagates its temperature to the components which it encloses. To
change the size of a Heat Sink, select it, then drag one of its selection handles.

With the parameter Number of terminals you can add and remove thermal
connectors to the heat sink in order to connect it to an external thermal net-
work. The connectors can be dragged along the edge of the heat sink with the
mouse by holding down the Shift key or using the middle mouse button. In
order to remove a thermal connector, disconnect it, then reduce the Number
of terminals. PLECS will not allow you to remove connected terminals.

For additional information see chapter “Thermal Modeling” (on page 115).

Parameters Number of terminals
This parameter allows you to change the number of external thermal con-
nectors of a heat sink. The default is 0.

Thermal capacitance
The value of the internal thermal capacitance, in J/K. The default is 1.

If the capacitance is set to zero, the heat sink must be connected to an ex-
ternal thermal capacitance or to a fixed temperature.

Initial temperature
The initial temperature difference between the heat sink and the thermal
reference at simulation start, in kelvin (K). The default is 0. If left blank
or if the value is nan, PLECS will initialize the value based on a thermal
“DC” analysis, see “Temperature Initialization” (on page 121).

Probe Signal Temperature
The temperature difference between the heat sink and the thermal refer-
ence, in kelvin (K).

406

Hit Crossing

Hit Crossing

Purpose Detect when signal reaches or crosses given value

Library Control / Discontinuous

Description The Hit Crossing block detects when the input signal reaches or crosses a
value in the specified direction. If a variable-step solver is used, a simulation
step is forced at the time when the crossing occurs. The output signal is 1 for
one simulation time step when a crossing occurs, 0 otherwise.

Parameters Hit crossing offset
The offset that the input signal has to reach or cross.

Hit crossing direction
The value rising causes hit crossings only when the input signal is rising.
If falling is chosen, only hit crossings for a falling input signal are de-
tected. The setting either causes hit crossing for rising and falling signals
to be detected.

Threshold
The threshold value used for the switch criteria.

Show output port
The output terminal of the Hit Crossing block will be hidden if the param-
eter is set to off. This setting only makes sense to force a simulation step
while using a variable-step solver.

Probe Signals Input
The block input signal.

Crossing signal
Outputs 1 for one simulation time step when a crossing occurs, 0 other-
wise. This probe signal is identical to the output signal.

407

14 Component Reference

Hysteretic Core

Purpose Magnetic core element with static hysteresis

Library Magnetic

Description This component models a segment of a magnetic core. It establishes a non-
linear relationship between the magnetic field strength H and the flux den-
sity B. The hysteresis characteristics is based on a Preisach model with a
Lorentzian distribution function.

The figure below shows a fully excited major hysteresis curve with some mi-
nor reversal loops. The major curve is defined by the saturation point (Hsat,
Bsat), the coercitive field strength Hc, the remanence flux density Br and the
saturated permeability µsat.

µsat

H

B

Hc Hsat

Br

Bsat

Parameters Cross-sectional area
Cross-sectional area A of the flux path, in m2.

Length of flux path
Length l of the flux path, in m.

Coercitive field strength
Coercitive field strength Hc for B = 0, in A/m.

Remanence flux density
Remanence flux density Br for H = 0, in teslas (T).

Saturation field strength
Field strength Hsat at the saturation point, in A/m.

408

Hysteretic Core

Saturation flux density
Flux density Bsat at the saturation point, in teslas (T).

Saturated rel. permeability
Relative permeability µr,sat = µsat/µ0 of the core material for H > Hsat.

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the core element, in A/m.

Flux density
The magnetic flux density B in the core element, in teslas (T).

Loss energy
The energy dissipated in the core, in joules (J). An energy pulse is gener-
ated each time a minor or major hysteresis loop is closed.

409

14 Component Reference

Ideal 3-Level Converter (3ph)

Purpose Switch-based 3-phase 3-level converter

Library Electrical / Converters

Description Implements a three-phase three-level converter with ideal switches. The con-
verter is modeled using the Triple Switch component (see page 691). The gate
input is a vector of three signals – one per leg. The phase output is connected
to the positive, neutral, and negative dc level according to the sign of the cor-
responding gate signal.

The electrical circuit for the converter is shown below:

0

a

b

c

–

+

410

Ideal Converter (3ph)

Ideal Converter (3ph)

Purpose Switch-based 3-phase converter

Library Electrical / Converters

Description Implements a three-phase two-level converter with ideal bi-positional
switches. The converter is modeled using the Double Switch component (see
page 383). The gate input is a vector of three signals – one per leg. The phase
output is connected to the positive dc level upon a positive gate signal, and
else to the negative dc level.

The electrical circuit for the converter is shown below:

+

a

b

c

–

411

14 Component Reference

Ideal Transformer

Purpose Ideally coupled windings with or without magnetizing inductance

Library Electrical / Transformers

Description This component represents a transformer with two or more ideally coupled
windings. At all windings w, the voltage vw across the winding divided by the
corresponding number of turns nw is the same:

v1

n1
=
v2

n2
=
v3

n3
= . . .

If the transformer does not have a finite magnetizing inductance (i.e. the in-
ductance value is set to inf), the currents iw of all windings multiplied with
the corresponding number of turns add up to zero:

0 = i1 · n1 + i2 · n2 + i3 · n3 + . . .

If the transformer does have a finite magnetizing inductance, the currents iw
of all windings multiplied with the corresponding number of turns add up to
the magnetizing current multiplied with the number of turns in the first wind-
ing:

im · n1 = i1 · n1 + i2 · n2 + i3 · n3 + . . .

In the transformer symbol, the first primary side winding is marked with a
little circle. The orientation of the other windings is indicated by a dot. Cur-
rents entering a terminal marked with the circle or a dot are considered posi-
tive.

Use the Polarity parameter to change the orientation of a specific winding.
This is equivalent to making the corresponding number of turns nw negative.

Parameters Number of windings
A two-element vector [w1 w2] containing the number of windings on the
primary side w1 and on the secondary side w2. The default is [1 1], which
represents a two-winding transformer with opposite windings.

Number of turns
A row vector specifying the number of turns for each winding. The vector
length must match the total number of primary and secondary side wind-
ings. First, all primary side windings are specified, followed by the specifi-
cations for all secondary side windings.

412

Ideal Transformer

Polarity
A string consisting of one + or - per winding specifying the winding polar-
ity. A single + or - is applied to all windings.

Magnetizing inductance
A non-zero scalar specifying the magnetizing inductance referred to the
first winding, in henries (H).

Initial magnetizing current
A scalar specifying the initial current through the magnetizing inductance
at simulation start, in Amperes (A). Must be zero if the magnetizing induc-
tance is infinite inf.

413

14 Component Reference

IGBT

Purpose Ideal IGBT with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Insulated Gate Bipolar Transistor is a semiconductor switch that is con-
trolled via the external gate. It conducts a current from collector to emitter
only if the gate signal is not zero.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between collector and emitter when
the IGBT is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the IGBT. The IGBT is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Vf +Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals IGBT voltage
The voltage measured between collector and emitter.

414

IGBT

IGBT current
The current through the IGBT flowing from collector to emitter.

IGBT gate signal
The gate input signal of the IGBT.

IGBT conductivity
Conduction state of the internal switch. The signal outputs 0 when the
IGBT is blocking, and 1 when it is conducting.

IGBT junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

IGBT conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

IGBT switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

415

14 Component Reference

IGBT 3-Level Converter (3ph)

Purpose 3-phase 3-level neutral-point clamped IGBT converter

Library Electrical / Converters

Description Implements a three-phase three-level IGBT converter with neutral point
clamping. The gate input is a vector of three signals – one per leg. The top-
most IGBT, connected to the positive dc level, is turned on if the correspond-
ing gate signal is ≥ 1, and the second IGBT if the signal is ≥ 0. The third
IGBT is turned on for signals ≤ 0 and the lowest one for signals ≤ −1. Gate
signal values of 1, 0 and −1 connect the phase output to the positive, neu-
tral and negative dc level. By applying a non-zero signal at the inhibit input
marked with “x” you can turn off all IGBTs.

You can choose between two different converter models:

• The basic IGBT 3-Level Converter is modeled using the component IGBT
with Diode (see page 434). No parameters can be entered.

• The IGBT 3-Level Converter with Parasitics is based on individual
IGBT (see page 414) and Diode (see page 361) components. In this model
you may specify forward voltages and on-resistances separately for the IG-
BTs and the diodes.

Note Due to the switching conditions of the IGBT with Diode (see page 434),
this device cannot be turned off actively while the current is exactly zero. This
may result in unexpected voltage waveforms if the converter is not loaded.

To resolve this problem, either use the IGBT 3-Level Converter with Para-
sitics, or allow a small non-zero load current to flow by connecting a large load
resistance to the converter.

416

IGBT 3-Level Converter (3ph)

The electrical circuit for the converter is shown below:

0

a

b

c

–

+

Parameters For a description of the parameters see the documentation of the IGBT with
Diode (on page 434), the IGBT (on page 414) and the Diode (on page 361).

Probe Signals The three-level IGBT converters provide 36 probe signals grouped by leg.
Each signal is a vector containing the appropriate quantities of the individ-
ual devices: voltage, current, conductivity, conduction loss and switching loss.
The vector elements are ordered top-to-bottom.

For the IGBT 3-Level Converter with Parasitics the diode probe signal
vectors are in the order: anti-parallel diodes (top-to-bottom), clamping diodes
(top-to-bottom).

417

14 Component Reference

IGBT 3-Level Half Bridge (NPC)

Purpose 3-level neutral-point clamped IGBT module

Library Electrical / Power Modules

Description This power module implements a single leg of a 3-level neutral-point clamped
voltage source inverter. It offers two configurations:

Switched All power semiconductors inside the module are modeled with
ideal switches. The individual IGBTs are controlled with logical gate signals.
An IGBT is on if the corresponding gate signal is not zero. For compatibility
with the averaged configuration it is recommended to use the value 1 for non-
zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled
voltage and current sources. The DC side of the inverter bridge has current
source behavior and must be connected to positively biased capacitors or volt-
age sources. The phase terminal is typically connected to an inductor. The
control inputs are the relative on-times of the IGBTs with values between 0
and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values
0 and 1.

• The control signals are the duty cycles of the individual IGBTs. They are
either computed directly from the modulation index or by periodically av-
eraging the digital gate signals over a fixed period of time, e.g. using the
Periodic Average block (see page 516). The averaging period does not need
to be synchronized with the PWM and can be as large as the inverse of the
switching frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation less than two IGBTs are turned on. It
also supports discontinuous conduction mode, e.g. when charging the DC link
capacitors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

418

IGBT 3-Level Half Bridge (NPC)

Note The sub-cycle average implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the first
and third IGBT and second and fourth IGBT must not exceed 1 at any time.
Also, the applied DC voltages must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Assertions
When set to on, the block will flag an error if the sums of the control sig-
nals for IGBT 1 and 3 or IGBT 2 and 4 exceed 1.

419

14 Component Reference

IGBT Chopper (High-Side Switch)

Purpose Buck converter IGBT module

Library Electrical / Power Modules

Description This power module implements a chopper used in buck converters. It offers
two configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled
voltage and current sources. The electrical input of the chopper has current
source behavior and must be connected to a positively biased capacitor or volt-
age source. The output terminal is typically connected to an inductor. The con-
trol input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed di-
rectly from the modulation index or by periodically averaging the digital
gate signal over a fixed period of time, e.g. using the Periodic Average block
(see page 516). The averaging period does not need to be synchronized with
the PWM and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and dis-
continuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.

Parameter Configuration
Switched or averaged circuit model.

420

IGBT Chopper (High-Side Switch with Reverse Diode)

IGBT Chopper (High-Side Switch with Reverse Diode)

Purpose Buck converter IGBT module with reverse diode

Library Electrical / Power Modules

Description This power module implements a chopper used in buck converters. It offers
two configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled
voltage and current sources. The electrical input of the chopper has current
source behavior and must be connected to a positively biased capacitor or volt-
age source. The output terminal is typically connected to an inductor. The con-
trol input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed di-
rectly from the modulation index or by periodically averaging the digital
gate signal over a fixed period of time, e.g. using the Periodic Average block
(see page 516). The averaging period does not need to be synchronized with
the PWM and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and dis-
continuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time sim-
ulations with high switching frequencies. If the reversed diode is not needed,
the alternative chopper module (see page 420) is preferred to minimize model
complexity.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.

421

14 Component Reference

Parameter Configuration
Switched or averaged circuit model.

422

IGBT Chopper (Low-Side Switch)

IGBT Chopper (Low-Side Switch)

Purpose Boost converter IGBT module

Library Electrical / Power Modules

Description This power module implements a chopper used in boost converters. It offers
two configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled
voltage and current sources. The electrical input of the chopper has current
source behavior and must be connected to a positively biased capacitor or volt-
age source. The output terminal is typically connected to an inductor. The con-
trol input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed di-
rectly from the modulation index or by periodically averaging the digital
gate signal over a fixed period of time, e.g. using the Periodic Average block
(see page 516). The averaging period does not need to be synchronized with
the PWM and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and dis-
continuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.

Parameter Configuration
Switched or averaged circuit model.

423

14 Component Reference

IGBT Chopper (Low-Side Switch with Reverse Diode)

Purpose Boost converter IGBT module with reverse diode

Library Electrical / Power Modules

Description This power module implements a chopper used in boost converters. It offers
two configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled
voltage and current sources. The electrical input of the chopper has current
source behavior and must be connected to a positively biased capacitor or volt-
age source. The output terminal is typically connected to an inductor. The con-
trol input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed di-
rectly from the modulation index or by periodically averaging the digital
gate signal over a fixed period of time, e.g. using the Periodic Average block
(see page 516). The averaging period does not need to be synchronized with
the PWM and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and dis-
continuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time sim-
ulations with high switching frequencies. If the reversed diode is not needed,
the alternative chopper module (see page 423) is preferred to minimize model
complexity.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.

424

IGBT Chopper (Low-Side Switch with Reverse Diode)

Parameter Configuration
Switched or averaged circuit model.

425

14 Component Reference

IGBT Converter (3ph)

Purpose 3-phase IGBT converter

Library Electrical / Converters

Description Implements a three-phase two-level IGBT converter with reverse diodes. The
gate input is a vector of three signals – one per leg. The upper IGBT, con-
nected to the positive dc level, is on if the corresponding gate signal is posi-
tive. The lower IGBT is on if the gate signal is negative. If the gate signal is
zero both IGBTs in the leg are switched off.

You can choose between two different converter models:

• The basic IGBT Converter is modeled using the component IGBT with
Diode (see page 434). PLECS needs only six internal switches to repre-
sent this converter, so the simulation is faster compared to the detailed con-
verter. No electrical parameters can be entered, but the thermal losses may
be specified.

• The IGBT Converter with Parasitics is based on individual IGBT (see
page 414) and Diode (see page 361) components. In this model you may
specify all electrical and thermal parameters separately for the IGBTs and
the diodes.

Note Due to the switching conditions of the IGBT with Diode (see page 434),
this device cannot be turned off actively while the current is exactly zero. This
may result in unexpected voltage waveforms if the converter is not loaded.

To resolve this problem, either use the IGBT Converter with Parasitics, or
allow a small non-zero load current to flow by connecting a large load resistance
to the converter.

426

IGBT Converter (3ph)

The electrical circuit for the converter is shown below:

–

a

b

c

+

Parameters For a description of the parameters see the documentation of the IGBT with
Diode (on page 434), the IGBT (on page 414) and the Diode (on page 361).

Probe Signals The two-level IGBT converters provide six or twelve probe signals, each a vec-
tor containing the appropriate quantities of the individual devices: voltage,
current, conductivity, conduction loss and switching loss. The vector elements
are ordered top-to-bottom, left-to-right: a+, a-, b+, b-, c+, c-.

427

14 Component Reference

IGBT Full Bridges (Series Connected)

Purpose Series-connected IGBT full-bridge inverters

Library Electrical / Power Modules

Description This component implements multiple series-connected inverter cells for use
in modular multilevel converters. All control signals as well as the DC link
terminals are vectorized with their width matching the number of cells. The
component offers two configurations:

Switched All power semiconductors are modeled with ideal switches. The
individual IGBTs are controlled with logical gate signals. An IGBT is on if the
corresponding gate signal is not zero. For compatibility with the averaged con-
figuration it is recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The component as a whole is modeled with controlled
voltage and current sources. The DC sides of the inverter cells have current
source behavior and and must be connected to positively biased capacitors or
voltage sources. The DC sides must remain galvanically isolated from each
other. The output terminals are typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the inverters can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values
0 and 1.

• The control signals are the duty cycles of the individual IGBTs. They are
either computed directly from the modulation index or by periodically av-
eraging the digital gate signals over a fixed period of time, e.g. using the
Periodic Average block (see page 516). The averaging period does not need
to be synchronized with the PWM and can be as large as the inverse of the
switching frequency.

In both use cases, the average implementation correctly accounts for blank-
ing times, i.e. when during commutation both IGBTs in one inverter leg are
turned off. It also supports discontinuous conduction mode, e.g. when charging
the DC link capacitors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time sim-
ulations with high switching frequencies. It can also increase the speed of of-
fline simulations, because the number of internal switches is greatly reduced.

428

IGBT Full Bridges (Series Connected)

Note The sub-cycle average implementation cannot model a shoot-through,
i.e. the situation where both IGBTs in a leg are turned on at the same time.
Therefore, the sum of the control signals for the upper and lower IGBT in a
leg must not exceed 1 at any time. Since the DC sides are not clamped, the DC
voltages must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Number of cells
Number of series-connected full-bridge inverters.

Assertions
When set to on, the block will flag an error if the sum of the control sig-
nals for the upper and lower IGBT in a leg exceeds 1.

429

14 Component Reference

IGBT Half Bridge

Purpose 2-level half-bridge IGBT module

Library Electrical / Power Modules

Description This power module implements a single leg of 2-level voltage source inverter.
It offers two configurations:

Switched The power semiconductors are modeled with ideal switches. The
individual IGBTs are controlled with logical gate signals. An IGBT is on if the
corresponding gate signal is not zero. For compatibility with the averaged con-
figuration it is recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled
voltage and current sources. The DC side of the inverter has current source
behavior and must be connected to a positively biased capacitor or voltage
source. The output terminal is typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values
0 and 1.

• The control signals are the duty cycles of the individual IGBTs. They are
either computed directly from the modulation index or by periodically av-
eraging the digital gate signals over a fixed period of time, e.g. using the
Periodic Average block (see page 516). The averaging period does not need
to be synchronized with the PWM and can be as large as the inverse of the
switching frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation both IGBTs are turned off. It also sup-
ports discontinuous conduction mode, e.g. when charging the DC link capacitor
via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

430

IGBT Half Bridge

Note The sub-cycle average implementation cannot model a shoot-through,
i.e. the situation where both IGBTs in a leg are turned on at the same time.
Therefore, the sum of the control signals for the upper and lower IGBT must
not exceed 1 at any time. Since the DC side is not clamped, the DC voltage
must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Assertions
When set to on, the block will flag an error if the sum of the control sig-
nals for the upper and lower IGBT exceeds 1.

431

14 Component Reference

IGBT Half Bridges (Low-/High-Side Connected)

Purpose Series-connected IGBT half-bridge inverters

Library Electrical / Power Modules

Description These components implement multiple series-connected inverter cells for use
in modular multilevel converters. All control signals as well as the DC link
terminals are vectorized with their width matching the number of cells. The
components offer two configurations:

Switched All power semiconductors are modeled with ideal switches. The
individual IGBTs are controlled with logical gate signals. An IGBT is on if the
corresponding gate signal is not zero. For compatibility with the averaged con-
figuration it is recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The component as a whole is modeled with controlled
voltage and current sources. The DC sides of the inverter cells have current
source behavior and and must be connected to positively biased capacitors or
voltage sources. The DC sides must remain galvanically isolated from each
other. The output terminals are typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the inverters can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values
0 and 1.

• The control signals are the duty cycles of the individual IGBTs. They are
either computed directly from the modulation index or by periodically av-
eraging the digital gate signals over a fixed period of time, e.g. using the
Periodic Average block (see page 516). The averaging period does not need
to be synchronized with the PWM and can be as large as the inverse of the
switching frequency.

In both use cases, the average implementation correctly accounts for blank-
ing times, i.e. when during commutation both IGBTs in one inverter cell are
turned off. It also supports discontinuous conduction mode, e.g. when charging
the DC link capacitors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time sim-
ulations with high switching frequencies. It can also increase the speed of of-
fline simulations, because the number of internal switches is greatly reduced.

432

IGBT Half Bridges (Low-/High-Side Connected)

Note The sub-cycle average implementation cannot model a shoot-through,
i.e. the situation where both IGBTs in a leg are turned on at the same time.
Therefore, the sum of the control signals for the upper and lower IGBT must
not exceed 1 at any time. Since the DC sides are not clamped, the DC voltages
must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Number of cells
Number of series-connected half-bridge inverters.

Assertions
When set to on, the block will flag an error if the sum of the control sig-
nals for the upper and lower IGBT exceeds 1.

433

14 Component Reference

IGBT with Diode

Purpose Ideal IGBT with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of an Insulated Gate Bipolar Transistor has an integrated anti-
parallel diode. The diode is usually required in AC applications such as volt-
age source inverters.

This device is modeled as a single ideal switch that closes when the gate sig-
nal is not zero or the voltage becomes negative and opens when the gate sig-
nal is zero and the current becomes positive.

Note Due to the switching conditions described above, this device cannot be
turned off actively while the current is exactly zero. This may result in unex-
pected voltage waveforms if the device is used e.g. in an unloaded converter.

To resolve this problem, either use an individual IGBT (see page 414) with an
individual anti-parallel Diode (see page 361), or allow a small non-zero load cur-
rent to flow by connecting a large load resistance to the converter.

Parameters Initial conductivity
Initial conduction state of the device. The device is initially blocking if the
parameter evaluates to zero, otherwise it is conducting. This parameter
may either be a scalar or a vector corresponding to the implicit width of
the component. The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 115) and “Losses of Semiconductor Switch with Diode” (on page 142).

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

434

IGBT with Diode

Probe Signals Device voltage
The voltage measured between collector/cathode and emitter/anode. The
device voltage can never be negative.

Device current
The current through the device. The current is positive if it flows through
the IGBT from collector to emitter and negative if it flows through the
diode from anode to cathode.

Device gate signal
The gate input signal of the device.

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the
device is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

435

14 Component Reference

IGBT with Limited di/dt

Purpose Dynamic IGBT model with finite current slopes during turn-on and turn-off

Library Electrical / Power Semiconductors

Description In contrast to the ideal IGBT model (see page 414) that switches instanta-
neously, this model includes collector current transients during switching.
Thanks to the continuous current decay during turn-off, stray inductances
may be connected in series with the device. In converter applications, the di/dt
limitation during turn-on determines the magnitude of the reverse recovery
effect in the free-wheeling diodes.

This IGBT model is used to simulate overvoltages produced by parasitic induc-
tances in the circuit. Since the voltage and current transient waveforms are
simplified, the model is not suited for the simulation of switching losses.

Note

• Due to the small time-constants introduced by the turn-on and turn-off tran-
sients a stiff solver is recommended for this device model.

• If multiple IGBTs are connected in series the off-resistance may not be infi-
nite.

The behavior of this IGBT model is demonstrated with the following test cir-
cuit. The free-wheeling diode for the inductive load is modeled with reverse
recovery (see page 363).

Gate1
1

L_dc
V_dc

L_sigma

Drr1

IGBT2

436

IGBT with Limited di/dt

The diagram below shows the collector current iC(t) of the IGBT and the re-
sulting collector-emitter voltage vCE(t) during switching:

v
CE

0

100 %

t
f

t
r

t

i
C

t
off

t
on

0
10 %

90 %
100 %

Collector current and collector-emitter voltage

At t = toff the gate signal becomes zero, and the device current iC begins to
fall. The current slope follows an aperiodic oscillation

iC(t) = iC(toff)

e−2.4 (t− toff)

tf

(
1 +

2.4 (t− toff)

tf

)
where tf is the fall time specified in the component parameters. As illustrated
in the diagram, the maximum rate-of-change during turn-off is determined by
tf .

At t = ton a positive gate signal is applied. Unless the rate-of-change is limited
by other circuit components, the current rises linearly with constant di/dt. The
maximum di/dt depends on the rated continuous collector current IC and the
rise time tr specified in the component parameters:

437

14 Component Reference

dimax

dt
= 0.8 · IC

tr

The second diagram shows the collector current transients for different on-
state currents. It can be seen that the fall time is independent of the on-state
current. Since di/dt during turn-on is constant, the actual rise time is propor-
tional to the on-state current. In a real IGBT, the rise time would only vary
slightly with different on-state currents. Hence, assuming constant di/dt is
a worst-case estimate in respect of the reverse-recovery current in the free-
wheeling diode.

t

i
C

t
off

t
on

0

50 %

75 %

100 %

Parameters Blocking voltage
Maximum voltage VCES in volts (V) that under any conditions should be
applied between collector and emitter.

Continuous collector current
Maximum dc current IC in amperes (A) that the IGBT can conduct.

Forward voltage
Additional dc voltage Vf in volts (V) between collector and emitter when
the IGBT is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple IGBTs are connected in
series.

Rise time
Time tr in seconds between instants when the collector current has risen
from 10 % to 90 % of the continuous collector current IC (see figure above).

438

IGBT with Limited di/dt

Fall time
Time tf in seconds between instants when the collector current has
dropped from 90 % to 10 % of its initial value along an extrapolated
straight line tangent to the maximum rate-of-change of the current (see
figure above).

Stray inductance
Internal inductance Lσ in henries (H) measured between the collector and
emitter terminals.

Initial current
The initial current through the component at simulation start, in amperes
(A). The default is 0.

Probe Signals IGBT voltage
The voltage measured between collector and emitter.

IGBT current
The current through the IGBT flowing from collector to emitter.

IGBT conductivity
Conduction state of the internal switch. The signal outputs 0 when the
IGBT is blocking, and 1 when it is conducting.

439

14 Component Reference

IGCT (Reverse Blocking)

Purpose Ideal IGCT with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Integrated Gate Commutated Thyristor is a semiconductor switch that is
controlled via the external gate. It conducts a current from anode to cathode
only if the gate signal is not zero.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
IGCT is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the IGCT. The IGCT is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Vf +Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals IGCT voltage
The voltage measured between anode and cathode.

IGCT current
The current through the IGCT flowing from anode to cathode.

440

IGCT (Reverse Blocking)

IGCT gate signal
The gate input signal of the IGCT.

IGCT conductivity
Conduction state of the internal switch. The signal outputs 0 when the
IGCT is blocking, and 1 when it is conducting.

IGCT junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

IGCT conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

IGCT switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

441

14 Component Reference

IGCT (Reverse Conducting)

Purpose Ideal IGCT with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of an Integrated Gate Commutated Thyristor has an integrated
anti-parallel diode. The diode is usually included in power IGCT packages.

Parameters Initial conductivity
Initial conduction state of the device. The device is initially blocking if the
parameter evaluates to zero, otherwise it is conducting. This parameter
may either be a scalar or a vector corresponding to the implicit width of
the component. The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 115) and “Losses of Semiconductor Switch with Diode” (on page 142).

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals Device voltage
The voltage measured between anode and cathode. The device voltage can
never be negative.

Device current
The current through the device. The current is positive if it flows through
the IGCT from anode to cathode and negative if it flows through the diode
from cathode to anode.

Device gate signal
The gate input signal of the device.

442

IGCT (Reverse Conducting)

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the
device is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

443

14 Component Reference

Induction Machine (Slip Ring)

Purpose Non-saturable induction machine with slip-ring rotor

Library Electrical / Machines

Description This model of a slip-ring induction machine can only be used with the continu-
ous state-space method. If you want to use the discrete state-space method or
if you need to take saturation into account, please use the Induction Machine
with Saturation (see page 454).

The machine model is based on a stationary reference frame (Clarke transfor-
mation). A sophisticated implementation of the Clarke transformation facil-
itates the connection of external inductances in series with the stator wind-
ings. However, external inductors cannot be connected to the rotor windings
due to the current sources in the model. In this case, external inductors must
be included in the leakage inductance of the rotor.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. All electrical variables and parameters are
viewed from the stator side. In the component icon, phase a of the stator and
rotor windings is marked with a dot.

In order to inspect the implementation, please select the component in your
circuit and choose Look under mask from the Subsystem submenu of the
Edit menu. If you want to make changes, you must first choose Break li-
brary link and then Unprotect, both from the same menu.

Electrical System

The rotor flux is computed as

Ψr,d = L′lr i
′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′lr i

′
r,q + Lm

(
is,q + i′r,q

)
The three-phase voltages vs,ab and vs,bc at the stator terminals are trans-
formed into dq quantities: vs,d

vs,q

 =

 2
3

1
3

0 1√
3

 ·
 vs,ab

vs,bc

444

Induction Machine (Slip Ring)

Rs Lls

Lm

L'lr -ω∙ Ψ 'r,q R'r

+

−

vs,d

+

−

v'r,d

is,d i'r,d

d-axis

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,d

+

−

vs,q

+

−

v'r,q

is,q i'r,q

q-axis

Likewise, the stator currents in the stationary reference frame are trans-
formed back into three-phase currents:

is,a

is,b

is,c

 =

1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

 ·
 is,d

is,q

Similar equations apply to the voltages and currents at the rotor terminals
with θ being the electrical rotor position: v′r,d

v′r,q

 =
2

3

 cos θ − cos
(
θ − 2π

3

)
sin θ − sin

(
θ − 2π

3

)
 ·
 v′r,ab

v′r,bc

i′r,a

i′r,b

i′r,c

 =

cos θ sin θ

cos
(
θ + 2π

3

)
sin
(
θ + 2π

3

)
cos
(
θ − 2π

3

)
sin
(
θ − 2π

3

)
 ·
 i′r,d

i′r,q

Electro-Mechanical System

Electromagnetic torque:

445

14 Component Reference

Te =
3

2
pLm

(
is,q i

′
r,d − is,d i′r,q

)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

Parameters Stator resistance
Stator winding resistance Rs in ohms (Ω).

Stator leakage inductance
Stator leakage inductance Lls in henries (H).

Rotor resistance
Rotor winding resistance R′r in ohms (Ω), referred to the stator side.

Rotor leakage inductance
Rotor leakage inductance L′lr in henries (H), referred to the stator side.

Magnetizing inductance
Magnetizing inductance Lm in henries (H), referred to the stator side.

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in s−1.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians. If θm,0 is an integer multiple
of 2π/p the stator windings are aligned with the rotor windings at simula-
tion start.

446

Induction Machine (Slip Ring)

Initial stator currents
A two-element vector containing the initial stator currents is,a,0 and is,b,0
of phases a and b in amperes (A).

Initial stator flux
A two-element vector containing the initial stator flux Ψ′s,d,0 and Ψ′s,q,0 in
the stationary reference frame in Vs.

Probe Signals Stator phase currents
The three-phase stator winding currents is,a, is,b and is,c, in A. Currents
flowing into the machine are considered positive.

Rotor phase currents
The three-phase rotor winding currents i′r,a, i′r,b and i′s,c in A, referred to
the stator side. Currents flowing into the machine are considered positive.

Stator flux (dq)
The stator flux linkages Ψs,d and Ψs,q in the stationary reference frame in
Vs:

Ψs,d = Lls is,d + Lm

(
is,d + i′r,d

)
Ψs,q = Lls is,q + Lm

(
is,q + i′r,q

)
Magnetizing flux (dq)

The magnetizing flux linkages Ψm,d and Ψm,q in the stationary reference
frame in Vs:

Ψm,d = Lm

(
is,d + i′r,d

)
Ψm,q = Lm

(
is,q + i′r,q

)
Rotor flux (dq)

The rotor flux linkages Ψ′r,d and Ψ′r,q in the stationary reference frame in
Vs.

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

447

14 Component Reference

Induction Machine (Open Stator Windings)

Purpose Non-saturable induction machine with squirrel-cage rotor and open stator
windings

Library Electrical / Machines

Description This model of a squirrel-cage induction machine can only be used with the
continuous state-space method. The machine model is based on a stationary
reference frame (Clarke transformation). A sophisticated implementation of
the Clarke transformation facilitates the connection of external inductances in
series with the stator windings.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. All electrical variables and parameters are
viewed from the stator side. In the component icon, the positive terminal of
phase a of the stator windings is marked with a dot.

In order to inspect the implementation, please select the component in your
circuit and choose Look under mask from the Subsystem submenu of the
Edit menu.

Electrical System:

The rotor flux is computed as

Ψr,d = L′lr i
′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′lr i

′
r,q + Lm

(
is,q + i′r,q

)
The three-phase voltages vs,a, vs,b and vs,c across the individual stator wind-
ings are transformed into dq0 quantities:

vs,d

vs,q

vs,0

 =

2
3 − 1

3 − 1
3

0 1√
3
− 1√

3

1
3

1
3

1
3

 ·

vs,a

vs,b

vs,c

Likewise, the stator currents in the stationary reference frame are trans-
formed back into three-phase currents:

448

Induction Machine (Open Stator Windings)

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,q

+

−

vs,d

is,d i'r,d

d-axis

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,d

+

−

vs,q

is,q i'r,q

q-axis

Rs

Lls

+

−

vs,0

is,0

0-axis

is,a

is,b

is,c

 =

1 0 1

− 1
2

√
3

2 1

− 1
2 −

√
3

2 1

 ·

is,d

is,q

is,0

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
pLm

(
is,q i

′
r,d − is,d i′r,q

)
449

14 Component Reference

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

Parameters Most parameters for the Induction Machine with slip-ring rotor (see page 444)
are also applicable for this machine. Only the following parameter differs:

Initial stator currents
A three-element vector containing the initial stator currents is,a,0, is,b,0 and
is,c,0 of phase a, b and c in amperes (A).

Probe Signals Most probe signals for the Induction Machine with slip-ring rotor (see page
444) are also available with this machine. Only the following probe signal is
different:

Rotor currents
The rotor currents i′r,d and i′r,q in the stationary reference frame in A, re-
ferred to the stator side.

450

Induction Machine (Squirrel Cage)

Induction Machine (Squirrel Cage)

Purpose Non-saturable induction machine with squirrel-cage rotor

Library Electrical / Machines

Description This model of a squirrel-cage induction machine can only be used with the
continuous state-space method. If you want to use the discrete state-space
method or if you need to take saturation into account, please use the Induc-
tion Machine with Saturation (see page 454) and short-circuit the rotor termi-
nals.

The machine model is based on a stationary reference frame (Clarke transfor-
mation). A sophisticated implementation of the Clarke transformation facil-
itates the connection of external inductances in series with the stator wind-
ings.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor
mode, otherwise in generator mode. All electrical variables and parameters
are viewed from the stator side. In the component icon, phase a of the stator
winding is marked with a dot.

In order to inspect the implementation, please select the component in your
circuit and choose Look under mask from the Subsystem submenu of the
Edit menu.

Electrical System

The rotor flux is computed as

Ψr,d = L′lr i
′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′lr i

′
r,q + Lm

(
is,q + i′r,q

)
The three-phase voltages vs,ab and vs,bc at the stator terminals are trans-
formed into dq quantities: vs,d

vs,q

 =

 2
3

1
3

0 1√
3

 ·
 vs,ab

vs,bc

451

14 Component Reference

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,q

+

−

vs,d

is,d i'r,d

d-axis

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,d

+

−

vs,q

is,q i'r,q

q-axis

Likewise, the stator currents in the stationary reference frame are trans-
formed back into three-phase currents:

is,a

is,b

is,c

 =

1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

 ·
 is,d

is,q

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
pLm

(
is,q i

′
r,d − is,d i′r,q

)
Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

452

Induction Machine (Squirrel Cage)

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

Parameters Same as for the Induction Machine with slip-ring rotor (see page 444).

Probe Signals Most probe signals for the Induction Machine with slip-ring rotor (see page
444) are also available with this squirrel-cage machine. Only the following
probe signal is different:

Rotor currents
The rotor currents i′r,d and i′r,q in the stationary reference frame in A, re-
ferred to the stator side.

453

14 Component Reference

Induction Machine with Saturation

Purpose Induction machine with slip-ring rotor and main-flux saturation

Description The Induction Machine with Saturation models main flux saturation by means
of a continuous function.
The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. All electrical variables and parameters are
viewed from the stator side. In the component icon, phase a of the stator and
rotor winding is marked with a dot.

Electrical System:

Rs Lls

Lm

L'lr -ω∙ Ψ 'r,q R'r

+

−

vs,d

+

−

v'r,d

is,d i'r,d

d-axis

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,d

+

−

vs,q

+

−

v'r,q

is,q i'r,q

q-axis

The rotor flux is defined as

Ψr,d = L′lr i
′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′lr i

′
r,q + Lm

(
is,q + i′r,q

)
.

The machine model offers two different implementations of the electrical sys-
tem: a traditional stationary reference frame and a voltage-behind-reactance
formulation.

454

Induction Machine with Saturation

Stationary Reference Frame This implementation is based on machine
equations in the stationary reference frame (Clarke transformation). Constant
coefficients in the stator and rotor equations make the model numerically ef-
ficient. However, interfacing the reference frame with the external 3-phase
network may be difficult. Since the coordinate transformations are based on
voltage-controlled current sources inductors and naturally commutated de-
vices such as diode rectifiers may not be directly connected to the stator ter-
minals. In these cases, fictitious RC snubbers are required to create the neces-
sary voltages across the terminals. The implementation can be used with both
the continuous and the discrete state-space method.

Voltage behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The rotor dy-
namics are expressed using explicit state-variable equations while the stator
branch equations are described in circuit form. However, due to the resulting
time-varying inductance matrices, this implementation is numerically less effi-
cient than the traditional reference frame.

In both implementations, the value of the main flux inductances Lm,d and
Lm,q are not constant but depend on the main flux linkage Ψm as illustrated
in the Ψm/im diagram. For flux linkages far below the transition flux ΨT, the

∂Ψ/∂i = L
m,0

∂Ψ/∂i = L
m,sat

f
T
 = 4

f
T
 = 2

f
T
 = 1

f
T
 = 0.5

i
m

Ψ
m

Ψ
T

relationship between flux and current is almost linear and is determined by
the unsaturated magnetizing inductance Lm,0. For large flux linkages the re-
lationship is governed by the saturated magnetizing inductance Lm,sat. ΨT de-
fines the knee of the transition between unsaturated and saturated main flux
inductance. The tightness of the transition is defined with the form factor fT.
If you do not have detailed information about the saturation characteristic of

455

14 Component Reference

your machine, fT = 1 is a good starting value. The function

plsaturation(Lm0,Lmsat,PsiT,fT)

plots the main flux vs. current curve and the magnetizing inductance vs. cur-
rent curve for the parameters specified.

The model accounts for steady-state cross-saturation, i.e. the steady-state
magnetizing inductances along the d-axis and q-axis are functions of the cur-
rents in both axes. In the implementation, the stator currents and the main
flux linkage are chosen as state variables. With this type of model, the repre-
sentation of dynamic cross-saturation can be neglected without affecting the
machine’s performance. The computation of the time derivative of the main
flux inductance is not required.

In order to inspect the implementation, please select the component in your
circuit and choose Look under mask from the Subsystem submenu of the
Edit menu. If you want to make changes, you must first choose Break li-
brary link and then Unprotect, both from the same menu.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (is,q Ψs,d − is,d Ψs,q)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

456

Induction Machine with Saturation

Parameters Model
Implementation in the stationary reference frame or as a voltage behind
reactance.

Stator resistance
Stator winding resistance Rs in ohms (Ω).

Stator leakage inductance
Stator leakage inductance Lls in henries (H).

Rotor resistance
Rotor winding resistance R′r in ohms (Ω), referred to the stator side.

Rotor leakage inductance
Rotor leakage inductance L′lr in henries (H), referred to the stator side.

Unsaturated magnetizing inductance
Unsaturated main flux inductance Lm,0, in henries (H), referred to the sta-
tor side.

Saturated magnetizing inductance
Saturated main flux inductance Lm,sat in henries (H), referred to the stator
side. If you do not want to model saturation, set Lm,sat = Lm,0.

Magnetizing flux at saturation transition
Transition flux linkage ΨT, in Vs, defining the knee between unsaturated
and saturated main flux inductance.

Tightness of saturation transition
Form factor fT defining the tightness of the transition between unsatu-
rated and saturated main flux inductance. The default is 1.

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in s−1.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians. If θm,0 is an integer multiple
of 2π/p the stator windings are aligned with the rotor windings at simula-
tion start.

457

14 Component Reference

Initial stator currents
A two-element vector containing the initial stator currents is,a,0 and is,b,0
of phases a and b in amperes (A).

Initial stator flux
A two-element vector containing the initial stator flux Ψs,d,0 and Ψs,q,0 in
the stationary reference frame in Vs.

Probe Signals Stator phase currents
The three-phase stator winding currents is,a, is,b and is,c, in A. Currents
flowing into the machine are considered positive.

Rotor phase currents
The three-phase rotor winding currents i′r,a, i′r,b and i′s,c in A, referred to
the stator side. Currents flowing into the machine are considered positive.

Stator flux (dq)
The stator flux linkages Ψs,d and Ψs,q in the stationary reference frame in
Vs.

Magnetizing flux (dq)
The magnetizing flux linkages Ψm,d and Ψm,q in the stationary reference
frame in Vs.

Rotor flux (dq)
The rotor flux linkages Ψ′r,d and Ψ′r,q in the stationary reference frame in
Vs, referred to the stator side.

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

References
D. C. Aliprantis, O. Wasynczuk, C. D. Rodriguez Valdez, “A voltage-behind-

reactance synchronous machine model with saturation and arbitrary ro-
tor network representation”, IEEE Transactions on Energy Conversion,
Vol. 23, No. 2, June 2008.

K. A. Corzine, B. T. Kuhn, S. D. Sudhoff, H. J. Hegner, “An improved method
for incorporating magnetic saturation in the Q-D synchronous ma-
chine model”, IEEE Transactions on Energy Conversion, Vol. 13, No. 3,
Sept. 1998.

458

Induction Machine with Saturation

E. Levi, “A unified approach to main flux saturation modelling in D-Q axis
models of induction machines”, IEEE Transactions on Energy Conver-
sion, Vol. 10, No. 3, Sept. 1995.

E. Levi, “Impact of cross-saturation on accuracy of saturated induction ma-
chine models”, IEEE Transactions on Energy Conversion, Vol. 12, No. 3,
Sept. 1997.

459

14 Component Reference

Inductor

Purpose Ideal inductor

Library Electrical / Passive Components

Description This component provides one or multiple ideal inductors between its two elec-
trical terminals. If the component is vectorized, a magnetic coupling can be
specified between the internal inductors. Inductors may be switched in series
only if their momentary currents are equal.

Note An inductor may not be connected in series with a current source. Doing
so would create a dependency between an input variable (the source current)
and a state variable (the inductor current) in the underlying state-space equa-
tions.

Parameters Inductance
The inductance in henries (H). All finite positive and negative values are
accepted, including 0. The default is 0.001.

In a vectorized component, all internal inductors have the same induc-
tance if the parameter is a scalar. To specify the inductances individually
use a vector [L1 L2 . . . Ln] . The length n of the vector determines the com-
ponent’s width:

v1

v2

...

vn

 =

L1 0 · · · 0

0 L2 · · · 0
...

...
. . .

...

0 0 · · · Ln

 ·

d
dt i1

d
dt i2

...
d
dt in

In order to model a magnetic coupling between the internal inductors en-
ter a square matrix. The size n of the matrix corresponds to the width of
the component. Li is the self inductance of the internal inductor and Mi,j

the mutual inductance:

460

Inductor

v1

v2

...

vn

 =

L1 M1,2 · · · M1,n

M2,1 L2 · · · M2,n

...
...

. . .
...

Mn,1 Mn,2 · · · Ln

 ·

d
dt i1

d
dt i2

...
d
dt in

The inductance matrix must be invertible, i.e. it may not be singular. A
singular inductance matrix results for example when two or more induc-
tors are ideally coupled. To model this, use an inductor in parallel with an
Ideal Transformer (see page 412).

The relationship between the coupling factor ki,j and the mutual induc-
tance Mi,j is

Mi,j = Mj,i = ki,j ·
√
Li · Lj

Initial current
The initial current through the inductor at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to
the width of the component. The direction of a positive initial current is
indicated by a small arrow in the component symbol. The default of the
initial current is 0.

Probe Signals Inductor current
The current flowing through the inductor, in amperes (A). The direction of
a positive current is indicated with a small arrow in the component sym-
bol.

Inductor voltage
The voltage measured across the inductor, in volts (V).

461

14 Component Reference

Inertia

Purpose Model a rotating body with inertia

Library Mechanical / Rotational / Components

Description This component models a rotating body with inertia and two rigidly connected
flanges. The angular speed is determined by the equation

d

dt
ω =

1

J
· (τ1 + τ2)

where τ1 and τ2 are the torques acting at the two flanges towards the body.

Parameters Moment of inertia
The moment of inertia J , in kg·m2

rad2 .

Initial speed
The initial angular speed ω0, in rad

s .

Initial angle
The initial angle θ0, in radians. May be specified in order to provide proper
initial conditions if absolute angles are measured anywhere in the system.
Otherwise, this parameter can be left blank.

Probe Signals Speed
The angular speed of the body.

Angle
The absolute angle of the body (wrapped between −π and π).

462

Initial Condition

Initial Condition

Purpose Output specified initial value in the first simulation step

Library Control / Sources

Description The Initial Condition block outputs the initial value in the very first simula-
tion step and the input value at all subsequent steps.

If this block is placed inside an algebraic loop, it provides an initial guess of
the value of its output signal to be used by the equation solver at the start of
a simulation. See the section “Block Sorting” (on page 29) for more informa-
tion on algebraic loops.

Parameter Initial value
The initial output value in the first simulation step.

463

14 Component Reference

Integrator

Purpose Integrate input signal with respect to time

Library Control / Continuous

Description The Integrator block outputs the integral of its input signal at the current
time step. The output signal may have an upper and lower limit. It can be
reset to its initial value by an external trigger signal. The initial value may be
provided either via a parameter or via an input signal.

Interaction with the Solver

Simulation with the Continuous State-Space Method When simulated
with the continuous method, the input signal is simply passed on to the solver
for integration.

Simulation with the Discrete State-Space Method When simulated with
the discrete method, the input signal is integrated within PLECS using the
Forward Euler method.

Parameters External reset
The behaviour of the external reset input. The values rising, falling and
either cause a reset of the integrator on the rising, falling or both edges
of the reset signal. A rising edge is detected when the signal changes from
0 to a positive value, a falling edge is detected when the signal changes
from a positive value to 0. If the value level is chosen, the output signal
keeps the initial value while the reset input is not 0.

Initial condition source
Specifies whether the initial condition is provided via the Initial condi-
tion parameter (internal) or via an input signal (external).

Initial condition
The initial condition of the integrator. The value may be a scalar or a vec-
tor corresponding to the implicit width of the component. This param-
eter is shown only if the Initial condition source parameter is set to
internal.

Show state port
Specifies whether to show an additional state output port. The state port
is updated at a slightly different point in the block execution order (i.e. be-
fore the reset and initial condition inputs are evaluated) and may therefore

464

Integrator

be used to calculate an input signal for the external reset input or the ini-
tial condition input.

Upper saturation limit
An upper limit for the output signal. If the value is inf the output signal
is unlimited.

Lower saturation limit
A lower limit for the output signal. If the value is -inf the output signal
is unlimited.

Probe Signal State
The internal state of the integrator.

Note Both the external reset input and the initial condition input have direct
feedthrough on the output signal. Therefore, feeding back the output signal to
create the reset signal or an initial value will create an algebraic loop. This can
be avoided by using the state port instead.

465

14 Component Reference

JK Flip-flop

Purpose Implement edge-triggered JK flip-flop

Library Control / Logical

Description The JK flip-flop changes its output when an edge in the clock signal is de-
tected according to the following truth table:

J K Q /Q

0 0 No change No change

0 1 0 1

1 0 1 0

1 1 /Qprev Qprev

As long as no edge is detected in the clock signal the outputs remain stable.

When a trigger occurs and J = K = 1 the outputs are toggled, i.e change from
1 to 0 or vice versa.

The inputs J and K are latched, i.e. when a triggering edge in the clock signal
is detected the values of J and K from the previous simulation step are used
to set the output. In other words, J and K must be stable for at least one sim-
ulation step before the flip-flop is triggered by the clock signal.

Parameters Trigger edge
The direction of the edge on which the inputs are read.

Initial state
The state of the flip-flop at simulation start.

Probe Signals J
The input signal J.

K
The input signal K.

Clk
The clock input signal.

Q
The output signals Q.

466

JK Flip-flop

/Q
The output signals /Q.

467

14 Component Reference

Leakage Flux Path

Purpose Permeance of linear leakage flux path

Library Magnetic

Description This component models a magnetic leakage flux path. It establishes a linear
relationship between the magnetic flux Φ and the magneto-motive force F .
Magnetic permeance P is the reciprocal of magnetic reluctance R:

P =
1

R
=

Φ

F
This component is equivalent to the Magnetic Permeance (see page 475). The
only difference is the symbol.

Parameters Effective Permeance
Magnetic permeance of the leakage flux path, in webers per ampere-turn
(Wb/A).

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

468

Linear Core

Linear Core

Purpose Linear magnetic core element

Library Magnetic

Description This component models a segment of a magnetic core. It establishes a linear
relationship between the magnetic flux Φ and the magneto-motive force F

Φ

F
=
µ0µrA

l

where µ0 = 4π × 10−7 N/A2 is the magnetic constant, µr is the relative per-
meability of the material, A is the cross-sectional area and l the length of the
flux path.

Parameters Cross-sectional area
Cross-sectional area A of the flux path, in m2.

Length of flux path
Length l of the flux path, in m.

Rel. permeability
Relative permeability µr of the core material.

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the core element, in A/m.

Flux density
The magnetic flux density B in the core element, in teslas (T).

469

14 Component Reference

Linear Transformer (2 Windings)

Purpose Single-phase transformer with winding resistance and optional core loss

Library Electrical / Transformers

Description This transformer models two coupled windings on the same core. The magne-
tization inductance Lm and the core loss resistance Rm are modeled as linear
elements. Their values are referred to the primary side. A stiff solver is rec-
ommended if Rm is not infinite.

The electrical circuit for this component is given below:

Rm

L1 R1

Lm

i1 L2 R2 i2

n2n1

In the transformer symbol, the primary side winding is marked with a little
circle. The secondary side winding is marked with a dot.

Parameters Leakage inductance
A two-element vector containing the leakage inductance of the primary
side L1 and the secondary side L2. The inductivity is given in henries (H).

Winding resistance
A two-element vector containing the resistance of the primary winding R1

and the secondary winding R2, in ohms (Ω).

Winding ratio
The ratio n1/n2 between the number of turns of the primary and sec-
ondary winding.

Magnetization inductance
The magnetization inductance Lm, in henries (H). The value is referred to
the primary side.

470

Linear Transformer (2 Windings)

Core loss resistance
An equivalent resistance Rm representing the iron losses in the trans-
former core. The value in ohms (Ω) is referred to the primary side.

Initial current
A two-element vector containing the initial currents on the primary side
i1 and the secondary side i2, in amperes (A). The currents are considered
positive if flowing into the transformer at the marked terminals. The de-
fault is [0 0].

471

14 Component Reference

Linear Transformer (3 Windings)

Purpose Single-phase transformer with winding resistance and optional core loss

Library Electrical / Transformers

Description This transformer models three coupled windings on the same core. The mag-
netization inductance Lm and the core loss resistance Rm are modeled as lin-
ear elements. Their values are referred to the primary side. A stiff solver is
recommended if Rm is not infinite.

The electrical circuit for this component is given below:

RmLm

i1

n1

n2

n3

L3 R3 i3

L2 R2 i2L1 R1

In the transformer symbol, the primary side winding is marked with a little
circle. The secondary winding is marked with a dot at the outside terminal,
the tertiary winding with a dot at the inside terminal.

Parameters Leakage inductance
A three-element vector containing the leakage inductance of the primary
side L1, the secondary side L2 and the tertiary side L3. The inductivity is
given in henries (H).

Winding resistance
A three-element vector containing the resistance of the primary winding
R1, the secondary winding R2 and the tertiary winding R3, in ohms (Ω).

No. of turns
A three-element vector containing the number of turns of the primary
winding n1, the secondary winding n2 and the tertiary winding n3.

Magnetization inductance
The magnetization inductance Lm, in henries (H). The value is referred to
the primary side.

472

Linear Transformer (3 Windings)

Core loss resistance
An equivalent resistance Rm representing the iron losses in the trans-
former core. The value in ohms (Ω) is referred to the primary side.

Initial current
A three-element vector containing the initial currents on the primary side
i1, the secondary side i2 and the tertiary side i3, in amperes (A). The cur-
rents are considered positive if flowing into the transformer at the marked
terminals. The default is [0 0 0].

473

14 Component Reference

Logical Operator

Purpose Combine input signals logically

Library Control / Logical

Description The selected Logical Operator is applied to the input signals. The output of
the Logical Operator is 1 if the logical operation returns true, otherwise 0. In
case of a single input, the operator is applied to all elements of the input vec-
tor.

Parameters Operator
Chooses which logical operator is applied to the input signals. Available
operators are
• AND y = un & un−1 & . . . & u1 & u0

• OR y = un | un−1 | . . . | u1 | u0

• NAND y = ∼(un & un−1 & . . . & u1 & u0)

• NOR y = ∼(un | un−1 | . . . | u1 | u0)

• XOR y = un xor un−1 xor . . . xor u1 xor u0

• NOT y = ∼u

Number of inputs
The number of input terminals. If the NOT operator is selected, the number
of inputs is automatically set to 1.

Probe Signals Input i
The ith input signal.

Output
The block output signal.

474

Magnetic Permeance

Magnetic Permeance

Purpose Linear magnetic permeance

Library Magnetic

Description This component provides a magnetic flux path. It establishes a linear relation-
ship between the magnetic flux Φ and the magneto-motive force F . Magnetic
permeance P is the reciprocal of magnetic reluctance R:

P =
1

R
=

Φ

F

Parameters Permeance
Magnetic permeance of the flux path, in webers per ampere-turn (Wb/A).

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

475

14 Component Reference

Magnetic Port

Purpose Add magnetic connector to subsystem

Library Magnetic

Description Magnetic ports are used to establish magnetic connections between a
schematic and the subschematic of a subsystem (see page 603). If you copy a
Magnetic Port block into the schematic of a subsystem, a terminal will be cre-
ated on the subsystem block. The name of the port block will appear as the
terminal label. If you choose to hide the block name by unselecting the show
name option in the block menu, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by
using the middle mouse button.

Magnetic Ports in a Top-Level Schematic

In PLECS Blockset, if a Magnetic Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding mag-
netic terminal, which may be connected with other magnetic terminals of the
same or a different PLECS Circuit block. The Magnetic Port is also assigned a
unique physical port number. Together with the parameter Location on cir-
cuit block the port number determines the position of the magnetic terminal
of the PLECS Circuit block.

For compatibility reasons you can also place an Magnetic Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Width
The width of the connected magnetic path. The default auto means that
the width is inherited from connected components.

Port number
If a Magnetic Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

Location on circuit block
If a Magnetic Port is placed in a top-level schematic in PLECS Blockset,
this parameter specifies the side of the PLECS Circuit block on which the

476

Magnetic Port

corresponding terminal appears. By convention, left refers to the side
on which also input terminals are shown, and right refers to the side on
which also output terminals are shown.

477

14 Component Reference

Magnetic Resistance

Purpose Effective magnetic resistance for modeling losses

Library Magnetic

Description Magnetic resistances (analogous to electrical resistors) are used to model
frequency-depending losses in the magnetic circuit. They can be connected in
series or in parallel to a permeance, depending on the nature of the specific
loss. The energy relationship is maintained as the power

Ploss = F Φ̇ = F 2/Rm

converted into heat in a magnetic resistance corresponds to the power lost in
the electrical circuit.

Parameter Resistance
Effective magnetic resistance Rm, in A · (Wb/s)−1.

Probe Signal MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

478

Manual Double Switch

Manual Double Switch

Purpose Manual changeover switch with two positions

Library Electrical / Switches

Description This changeover switch provides an ideal switch with two positions. The po-
sition can be toggled between upper (0) and lower (1) by double-clicking the
component. Which input signal currently is connected to the output signal is
indicated in the icon.

Parameter Switch position
The current position of the switch. Possible values are 0 (upper position)
and 1 (lower position).

Probe Signal Switch position
State of the internal switch. The signal outputs 0 if the switch is in the
upper position, and 1 if it is in the lower position.

479

14 Component Reference

Manual Signal Switch

Purpose Switch between two input signals by double-clicking the component

Library Control / Discontinuous

Description The Signal Switch can be in the on-state or the off-state, connecting the first
or the second input to the output, respectively. The state can be toggled by
double-clicking the component. Which input signal currently is connected to
the output signal is indicated in the icon.

Parameter State
The current switch state, either “on” or “off”.

Probe Signals Inputs
The block input signals.

Output
The block output signal.

Switch position
The current state of the switch. The output is 0 while the switch is in the
off-state and 1 while it is in the on-state.

480

Manual Switch

Manual Switch

Purpose Manual on-off switch

Library Electrical / Switches

Description This Switch provides an ideal short or open circuit between its two electrical
terminals. The position can be toggled between upper (0, off) and lower (1, on)
by double-clicking the component. Which input signal currently is connected
to the output signal is indicated in the icon.

Parameter Switch position
The current position of the switch. Possible values are 0 (upper position,
off) and 1 (lower position, on).

Probe Signal Switch position
State of the internal switch. The signal outputs 0 if the switch is in the
upper position (off), and 1 if it is in the lower position (on).

481

14 Component Reference

Manual Triple Switch

Purpose Manual changeover switch with three positions

Library Electrical / Switches

Description This changeover switch provides an ideal switch with three positions. The po-
sition can be toggled between upper (-1), middle (0) and lower (1) by double-
clicking the component. Which input signal currently is connected to the out-
put signal is indicated in the icon.

Parameter Switch position
The current position of the switch. Possible values are -1 (upper position),
0 (middle position) and 1 (lower position).

Probe Signal Switch position
State of the internal switch. The signal outputs 0 if the switch is in the
middle position, 1 if it is in the lower position and -1 if it is in the upper
position.

482

Mass

Mass

Purpose Model a sliding body with inertia

Library Mechanical / Translational / Components

Description This component models a sliding body with inertia and two rigidly connected
flanges. The translational speed is determined by the equation

d

dt
v =

1

m
· (F1 + F2)

where F1 and F2 are the forces acting at the two flanges towards the body.

Parameters Mass
The mass m, in kg.

Initial speed
The initial speed v0, in m

s .

Initial position
The initial position x0, in meters. May be specified in order to provide
proper initial conditions if absolute positions are measured anywhere in
the system. Otherwise, this parameter can be left blank.

Probe Signals Speed
The speed of the body.

Position
The absolute position of the body.

483

14 Component Reference

Math Function

Purpose Apply specified mathematical function

Library Control / Math

Description The Math Function block calculates the output by applying the specified func-
tion to the input. For functions that require two inputs, the first input is
marked with a black dot.

Parameter Function
Chooses which function is applied to the input signals. Available functions
are
• square y = u2

• square root y =
√
u

• exponential y = eu

• logarithm y = ln(u)

• power y = uv

• mod y = mod(u, v)

• rem y = rem(u, v)

mod and rem both return the floating-point remainder of u/v. If u and v
have different signs, the result of rem has the same sign as u while the re-
sult of mod has the same sign as v.

Probe Signals Input i
The ith input signal.

Output
The block output signal.

484

Memory

Memory

Purpose Provide input signal from previous major time step

Library Control / Delays

Description The Memory block delays the input signal by a single major time step taken
by the solver.

Note

• The Memory block implicitly has a semi-continuous sample time. If you need
to specify a sample time explicitly, please use the Delay block instead (see
page 360).

• If a variable-step solver is used the delay time of the Memory block also
varies. If you use the Memory block to decouple an algebraic loop, this will
produce a dead-time with an uncontrolled jitter. Please consider using a low
pass filter instead.

Parameter Initial condition
The initial output during the first major time step.

Probe Signals Input
The input signal.

Output
The output signal.

485

14 Component Reference

Meter (3-Phase)

Purpose Measure voltages and currents of 3-phase system

Library Electrical / Meters

Description The meter block acts as a set of volt- and ammeters. Voltages can be mea-
sured from line to ground (Va, Vb and Vc) or from line to line (Vab, Vbc, Vca) de-
pending on the Voltage measurement parameter. The output for voltage and
current is a vectorized signal with three elements.

Parameter Voltage measurement
Determine whether the voltages are measured from line to ground or from
line to line.

Probe Signals Measured voltage
The measured voltages as a vector with three elements.

Measured current
The measured currents as a vector with three elements.

486

Minimum / Maximum

Minimum / Maximum

Purpose Output input signal with highest resp. lowest value

Library Control / Math

Description The Minimum / Maximum block compares its input signals against each other.
If the Operation parameter is set to Minimum, the output will be set to the
value of the input signal with the lowest value. If the Operation parameter
is set to Maximum, the output will be set to the value of the input signal with
the highest value.

In case of a single input, all elements of the input vector are compared. Vec-
torized input signals of the same width are compared element wise and result
in a vectorized output signal. If vectorized and scalar input signals are mixed,
the scalar input signals are expanded to the width of the vectorized input sig-
nals.

Parameters Operation
Selects between Minimum and Maximum as described above.

Number of inputs
The number of inputs.

Probe Signals Input i
The ith input signal.

Output
The block output signal.

487

14 Component Reference

MMF Meter

Purpose Output the measured magneto-motive force

Library Magnetic

Description The MMF Meter measures the magneto-motive force between its two mag-
netic terminals and provides it as a signal at the output of the component.
A positive MMF is measured when the magnetic potential at the terminal
marked with a “+” is greater than at the unmarked one. The output signal
can be made accessible in Simulink with an Output block (see page 583) or by
dragging the component into the dialog box of a Probe block.

Note The MMF Meter is ideal, i.e. it has an zero internal permeance. Hence,
if multiple meters are connected in series the MMF across an individual meter
is undefined. This produces a run-time error.

Probe Signal MMF
The measured magneto-motive force in ampere-turns (A).

488

MMF Source (Constant)

MMF Source (Constant)

Purpose Generate a constant magneto-motive force

Library Magnetic

Description The Constant MMF Source generates a constant magneto-motive force (MMF)
between its two magnetic terminals. The MMF is considered positive at the
terminal marked with a “+”.

Note An MMF source may not be short-circuited or connected in parallel to a
permeance or any other MMF source.

Parameter Voltage
The magnitude of the MMF, in ampere-turns (A). The default value is 1.

Probe Signal MMF
The magneto-motive force of the source, in ampere-turns (A).

489

14 Component Reference

MMF Source (Controlled)

Purpose Generate a variable magneto-motive force

Library Magnetic

Description The Controlled MMF Source generates a variable magneto-motive force
(MMF) between its two terminals. The MMF is considered positive at the ter-
minal marked with a “+”. The momentary MMF is determined by the signal
fed into the input of the component.

Note An MMF source may not be short-circuited or connected in parallel to a
permeance or any other MMF source.

Parameter Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of magnetic measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signal MMF
The magneto-motive force of the source, in ampere-turns (A).

490

Monoflop

Monoflop

Purpose Generate pulse of specified duration when triggered

Library Control / Logical

Description The output of the Monoflop changes to 1 when the trigger condition is fulfilled.
When the trigger condition is no longer fulfilled, the output stays 1 for the
given duration and changes to 0 afterwards.

Depending on the trigger type the behavior is as follows:

rising
The output is set to 1 for the given duration when the input changes from
0 to a non-zero value.

falling
The output is set to 1 for the given duration when the input changes from
a non-zero value to 0.

level
The output is set to 1 when the input is a non-zero value. It stays 1 for
the given duration after the input returns to 0. With this trigger type, the
Monoflop acts like a Turn-off delay.

The Monoflop can be retriggered, i.e. if the trigger condition is fulfilled again
while the output is 1, the pulse duration is extended.

The pulse duration can be specified statically via a parameter or dynamically
during the simulation via an input signal.

Parameters Trigger type
The trigger type as described above.

Pulse duration source
Specifies whether the duration is determined by the Pulse duration pa-
rameter (internal) or by an external input signal (exernal).

Pulse duration
The duration for which the output is set to 1, in seconds. If set to 0, the
Monoflop is disabled and outputs 0 at all times.

Duration rounding (fixed-step)
If the duration is determined by an external signal and the Monoflop is
used with a fixed-step solver, this parameter specifies how the duration is
rounded to an integer multiple of the fixed step size.

491

14 Component Reference

Probe Signals Input
The input signal.

Output
The output signal.

492

MOSFET

MOSFET

Purpose Ideal MOSFET with optional on-resistance

Library Electrical / Power Semiconductors

Description The Metal Oxide Semiconductor Field Effect Transistor is a semiconductor
switch that is controlled via the external gate. It conducts a current from
drain to source (or vice-versa) only if the gate signal is not zero.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the MOSFET. The MOSFET is initially blocking
if the parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals MOSFET voltage
The voltage measured between drain and source.

MOSFET current
The current through the MOSFET flowing from drain to source.

MOSFET gate signal
The gate input signal of the MOSFET.

493

14 Component Reference

MOSFET conductivity
Conduction state of the internal switch. The signal outputs 0 when the
MOSFET is blocking, and 1 when it is conducting.

MOSFET junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

MOSFET conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

MOSET switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

494

MOSFET Converter (3ph)

MOSFET Converter (3ph)

Purpose 3-phase MOSFET converter

Library Electrical / Converters

Description Implements a three-phase two-level MOSFET converter with reverse diodes.
The gate input is a vector of three signals – one per leg. The upper MOSFET,
connected to the positive dc level, is on if the corresponding gate signal is posi-
tive. The lower MOSFET is on if the gate signal is negative. If the gate signal
is zero both MOSFETs in the leg are switched off.

You can choose between two different converter models:

• The basic MOSFET Converter is modeled using the component MOSFET
with Diode (see page 496). PLECS needs only six internal switches to simu-
late this converter. Only the on-resistances of the MOSFETs can be entered.

• The MOSFET Converter with Parasitics is based on individual MOSFET
(see page 493) and Diode (see page 361) components. In this model you may
specify forward voltages and on-resistances separately for the MOSFETs
and diodes.

Note Due to the switching conditions of the MOSFET with Diode (see page
496), this device cannot be turned off actively while the current is exactly zero.
This may result in unexpected voltage waveforms if the converter is not loaded.

To resolve this problem, either use the MOSFET Converter with Parasitics,
or allow a small non-zero load current to flow by connecting a large load resis-
tance to the converter.

Parameters For a description of the parameters see the documentation of the MOSFET
with Diode (on page 496), the MOSFET (on page 493) and the Diode (on page
361).

Probe Signals The two-level MOSFET converters provide six or twelve probe signals, each a
vector containing the appropriate quantities of the individual devices: voltage,
current, conductivity, conduction loss and switching loss. The vector elements
are ordered top-to-bottom, left-to-right: a+, a-, b+, b-, c+, c-.

495

14 Component Reference

MOSFET with Diode

Purpose Ideal MOSFET with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of a Metal Oxide Semiconductor Field Effect Transistor has an in-
tegrated anti-parallel diode. The diode is usually included in power MOSFET
packages.

This device is modeled as a single ideal switch that closes when the gate sig-
nal is not zero or the voltage becomes negative and opens when the gate sig-
nal is zero and the current becomes positive.

Note Due to the switching conditions described above, this device cannot be
turned off actively while the current is exactly zero. This may result in unex-
pected voltage waveforms if the device is used e.g. in an unloaded converter.

To resolve this problem, either use an individual MOSFET (see page 493) with
an individual anti-parallel Diode (see page 361), or allow a small non-zero load
current to flow by connecting a large load resistance to the converter.

Parameters Initial conductivity
Initial conduction state of the device. The device is initially blocking if the
parameter evaluates to zero, otherwise it is conducting. This parameter
may either be a scalar or a vector corresponding to the implicit width of
the component. The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 115) and “Losses of Semiconductor Switch with Diode” (on page 142).

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

496

MOSFET with Diode

Probe Signals Device voltage
The voltage measured between drain and source. The device voltage can
never be negative.

Device current
The current through the device. The current is positive if it flows through
the MOSFET from drain to source and negative if it flows through the
diode from source to drain.

Device gate signal
The gate input signal of the device.

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the
device is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

497

14 Component Reference

MOSFET with Limited di/dt

Purpose Dynamic MOSFET model with finite current slopes during turn-on and turn-
off

Library Electrical / Power Semiconductors

Description In contrast to the ideal MOSFET model (see page 493) that switches instan-
taneously, this model includes drain current transients during switching.
Thanks to the continuous current decay during turn-off, stray inductances
may be connected in series with the device.

This MOSFET model is used to simulate overvoltages produced by parasitic
inductances and the reverse recovery effect of diodes. Due to simplified voltage
and current transient waveforms, the model is not suited for the simulation
of switching losses. The dynamic behavior of this MOSFET model is identical
with the one of the IGBT with limited di/dt (see page 436).

Note

• Due to the small time-constants introduced by the turn-on and turn-off tran-
sients a stiff solver is recommended for this device model.

• If multiple MOSFETs are connected in series the off-resistance may not be
infinite.

Parameters Blocking voltage
Maximum voltage VDSS in volts (V) that under any conditions should be
applied between drain and source.

Continuous drain current
Maximum dc current ID in amperes (A) that the MOSFET can conduct.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple MOSFETs are con-
nected in series.

498

MOSFET with Limited di/dt

Rise time
Time tr in seconds between instants when the drain current has risen from
10 % to 90 % of the continuous drain current ID.

Fall time
Time tf in seconds between instants when the drain current has dropped
from 90 % to 10 % of its initial value along an extrapolated straight line
tangent the maximum rate-of-change of the current.

Fall time
Time tf in seconds between instants when the drain current has dropped
from 90 % to 10 % of its initial value along an extrapolated straight line
tangent the maximum rate-of-change of the current decay.

Stray inductance
Internal inductance Lσ in henries (H) measured between the drain and
source terminals.

Initial current
The initial current through the component at simulation start, in amperes
(A). The default is 0.

Probe Signals MOSFET voltage
The voltage measured between drain and source.

MOSFET current
The current through the MOSFET flowing from drain to source.

MOSFET conductivity
Conduction state of the internal switch. The signal outputs 0 when the
MOSFET is blocking, and 1 when it is conducting.

499

14 Component Reference

Moving Average

Purpose Continuously average input signal over specified time period

Library Control / Filters

Description The Moving Average filter averages a continuous input signal u over the spec-
ified averaging time T . The output y is continuously updated in every simula-
tion step:

y(t) =
1

T

ˆ t

t−T
u(τ) dτ

The implementation of this block avoids accumulating numerical integration
errors typically associated with continuous-time implementations of FIR fil-
ters. However, the Moving Average filter is computationally more expensive
and less accurate than the similar Periodic Average (see page 516).

Parameters Averaging time
The length of the averaging period in sec.

Initial buffer size
Size of the internal ring buffer at simulation start. The buffer size will be
increased during the simulation if required.

Probe Signals Input
The input signal.

Output
The filtered output signal.

500

Mutual Inductor

Mutual Inductor

Purpose Ideal mutual inductor

Library Electrical / Passive Components

Description This component provides two or more coupled inductors. Electrically, it is
equivalent with a vectorized Inductor (see page 460). In contrast to the vec-
torized Inductor, this component displays the individual inductors in the
schematic as separate windings.

In the symbol of the mutual inductor, the positive terminal of winding 1 is
marked with a little circle. The positive terminals of all other windings are
marked with dots.

Note An inductor may not be connected in series with a current source. Doing
so would create a dependency between an input variable (the source current)
and a state variable (the inductor current) in the underlying state-space equa-
tions.

Parameters Number of windings
The number of ideal inductors represented by the component.

Inductance
The inductance in henries (H). All finite positive and negative values are
accepted, including 0.

If the parameter is a scalar or a vector no coupling exists between the
windings. In order to model a magnetic coupling between the windings a
square matrix must be entered. The size n of the matrix corresponds to
the number of windings. Li is the self inductance of the internal inductor
and Mi,j the mutual inductance:

v1

v2

...

vn

 =

L1 M1,2 · · · M1,n

M2,1 L2 · · · M2,n

...
...

. . .
...

Mn,1 Mn,2 · · · Ln

 ·

d
dt i1

d
dt i2

...
d
dt in

501

14 Component Reference

The inductance matrix must be invertible, i.e. it may not be singular. A
singular inductance matrix results for example when two or more induc-
tors are ideally coupled. To model this, use an inductor in parallel with an
Ideal Transformer (see page 412).

The relationship between the coupling factor ki,j and the mutual induc-
tance Mi,j is

Mi,j = Mj,i = ki,j ·
√
Li · Lj

Initial current
The initial current in the windings at simulation start, in amperes (A).
This parameter may either be a scalar or a vector corresponding to the
number of windings. The direction of the initial current inside the com-
ponent is from the positive to the negative terminal. The default of the
initial current is 0.

Probe Signals Winding i current
The current flowing through winding i, in amperes (A).

Winding i voltage
The voltage measured across winding i, in volts (V).

502

Mutual Inductance (2 Windings)

Mutual Inductance (2 Windings)

Purpose Magnetic coupling between two lossy windings

Library Electrical / Transformers

Description This component implements a magnetic coupling between two separate wind-
ings. For both windings the self inductance and resistance are specified in-
dividually. The mutual inductance and resistance are modeled as linear ele-
ments.

The electrical circuit for this component is given below:

1:1

i2i1

Rm

Lm

L1−Lm R1−Rm L2−Lm R2−Rm

In the symbol of the mutual inductance, the positive terminal of the primary
winding is marked with a little circle. The positive terminal of the secondary
winding is marked with a dot.

Parameters Self inductance
A two-element vector containing the self inductance for the primary wind-
ing L1 and the secondary winding L2. The inductivity is given in henries
(H).

Winding resistance
A two-element vector containing the self resistance of the primary winding
R1 and the secondary winding R2, in ohms (Ω).

Mutual inductance
The mutual inductance Lm, in henries (H).

Mutual resistance
The mutual resistance Rm, in ohms (Ω).

Initial current
A two-element vector containing the initial currents on the primary side
i1 and the secondary side i2, in amperes (A). The direction of the initial

503

14 Component Reference

current inside the component is from the positive to the negative terminal.
The default value is [0 0].

Probe Signals Winding i current
The current flowing through winding i, in amperes (A).

Winding i voltage
The voltage measured across winding i, in volts (V).

504

Mutual Inductance (3 Windings)

Mutual Inductance (3 Windings)

Purpose Magnetic coupling between three lossy windings

Library Electrical / Transformers

Description This component implements a magnetic coupling between three separate
windings. For all windings the self inductance and resistance are specified in-
dividually. The mutual inductance and resistance are modeled as linear ele-
ments.

The electrical circuit for this component is given below:

R3−Rm

i1

Rm

Lm

L1−Lm R1−Rm

1:1 :1

i3L3−Lm

i2L2−Lm R2−Rm

In the symbol of the mutual inductance, the positive terminal of the primary
winding is marked with a little circle. The positive terminals of the secondary
and tertiary windings are marked with dots.

Parameters Self inductance
A three-element vector containing the self inductance for the primary
winding L1, the secondary winding L2 and the tertiary winding L3. The
inductivity is given in henries (H).

Winding resistance
A three-element vector containing the self resistance of the primary wind-
ing R1, the secondary winding R2 and the tertiary winding R3, in ohms
(Ω).

Mutual inductance
The mutual inductance Lm, in henries (H).

Mutual resistance
The mutual resistance Rm, in ohms (Ω).

505

14 Component Reference

Initial current
A three-element vector containing the initial currents on the primary side
i1, the secondary side i2 and the tertiary side i3, in amperes (A). The direc-
tion of the initial current inside the component is from the positive to the
negative terminal. The default value is [0 0 0].

Probe Signals Winding i current
The current flowing through winding i, in amperes (A).

Winding i voltage
The voltage measured across winding i, in volts (V).

506

Non-Excited Synchronous Machine

Non-Excited Synchronous Machine

Purpose Non-excited synchronous machine configurable with lookup tables

Library Electrical / Machines

Description This three-phase synchronous machine has a solid rotor with optional per-
manent magnets. Magnetization, saliency, saturation and cross-coupling are
modeled by means of corresponding flux linkage and incremental inductance
lookup tables.

The machine can operate as either a motor or generator. If the mechanical
torque has the same sign as the rotational speed, the machine is operating in
motor mode; otherwise it is in generator mode. In the component icon, phase a
is marked with a dot.

In order to inspect the implementation, please select the component in your
circuit and choose Look under mask from the Subsystem submenu of the
Edit menu. If you want to make changes, you must first choose Break li-
brary link both from the same menu.

Electrical System

The model is realized by means of the Voltage Behind Reactance (VBR) for-
mulation and is therefore appropriate to simulate switching dead-time and
failure modes.

Electrical equation expressed in synchronous frame by means of space-vector
notation:

−→vs = Rs ·
−→
is + (Lσs + Lmi) · (

d
−→
is
dt

+ j · ω · −→is) +−→es

−→es = j · ω · −→ϕm − Lmi · j · ω ·
−→
is

with

−→x =

 xd

xq

where j · −→x rotates the synchronous frame vector, −→x , clockwise by 90◦.

These equations are transformed back into the stationary frame to control the
VBR network. The zero-sequence impedance of the machine is set to Lss.

507

14 Component Reference

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (ϕd iq − ϕq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters
General

Stator resistance
Armature or stator resistance Rs in Ω.

Stator leakage inductance
Leakage inductance of stator windings in henries (H). Stator leakage must
be set to a non-zero value.

Number of pole pairs
Number of pole pairs p.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A). ic,0 is calculated assuming a neutral connec-
tion.

Magnetizing Inductance

Id lookup vector
d-axis current vector serving as input values to flux linkage and incremen-
tal inductance lookup tables. Must be a vector with 2 or more elements,
and monotonically increasing, i.e. [0 ... id,max]. The values are in amperes
(A).

Iq lookup vector
q-axis current vector serving as input values to flux linkage and incremen-
tal inductance lookup tables. Must be a vector with 2 or more elements,

508

Non-Excited Synchronous Machine

and monotonically increasing, i.e. [0 ... iq,max]. The values are in amperes
(A).

Psid (Id, Iq) lookup table
d-axis flux linkage lookup table (2D). The number of rows and columns
must match the size of the d- and q-axis currents, respectively. The values
are in Volt-seconds (Vs).

Psiq (Id, Iq) lookup table
q-axis flux linkage lookup table (2D). The number of rows and columns
must match the size of the d- and q-axis currents, respectively. The values
are in Volt-seconds (Vs).

Lmidd (Id, Iq) lookup table
d-axis self incremental inductance lookup table (2D). The number of rows
and columns must match the size of the d- and q-axis currents, respec-
tively. If Lmi data is not specified, or set to [], the incremental inductance
is calculated from the flux linkage data. The values are in henries (H).

Lmiqq (Id, Iq) lookup table
q-axis self incremental inductance lookup table (2D). The number of rows
and columns must match the size of the d- and q-axis currents, respec-
tively. If Lmi data is not specified, or set to [], the incremental inductance
is calculated from the flux linkage data. The values are in henries (H).

Lmidq (Id, Iq) lookup table
Mutual incremental inductance lookup table (2D). The number of rows and
columns must match the size of the d- and q-axis currents, respectively. If
Lmi data is not specified, or set to [], the incremental inductance is calcu-
lated from the flux linkage data. The values are in henries (H).

Generated table size [d, q]
User-specified dimension to generate derived current vectors and corre-
sponding flux linkage and incremental inductance lookup tables.

If left empty, the supplied data is used as-is. If specified, the dimensions of
the rows and columns must be 2 or more.

Specifying a scalar value, n, will generate equally spaced, n-element d-
and q-axis current vectors. The corresponding 2D lookup tables for flux
linkage and incremental inductance are also generated.

Specifying a vector, [m,n], will generate equally spaced d- and q-axis cur-
rent vectors. The d-axis current vector will have m elements and the q-
axis current vector will have n elements. The corresponding 2D lookup ta-
bles for flux linkage and incremental inductance are also generated.

509

14 Component Reference

The size of the generated tables affect the model initialization and simu-
lation speeds. A smaller size leads to faster model initialization and sim-
ulation speeds, but lower resolution in the generated tables. A larger size
increases the resolution but adversely affects the model initialization and
simulation speeds. Care must be taken when configuring this parameter.

Current out of range
Configure to ignore, warn, warn and pause simulation, or generate error
and stop simulation if the d-axis or q-axis currents are outside the speci-
fied range.

Mechanical

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second (s−1).

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in A. Currents flow-
ing into the machine are considered positive.

Stator flux (dq)
The stator flux linkages ϕd and ϕq in the rotating reference frame.

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

References H. Bühler, “Réglage de systèmes d’électronique de puissance, vol 1: Théorie”,
Presses Polytechniques et universitaires romandes, Lausanne, 1997.

H. Bühler, “Réglage de systèmes d’électronique de puissance, vol 2: Entraîne-
ments réglés”, Presses Polytechniques et universitaires romandes, Lau-
sanne, 1997.

510

Offset

Offset

Purpose Add constant offset to input signal

Library Control / Math

Description The Offset block adds a constant to the input signal.

Parameter Offset
The offset to add to the input signal. This value may be negative to sub-
tract an offset from the signal.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signals Input
The input signal.

Output
The output signal.

511

14 Component Reference

Op-Amp

Purpose Ideal operational amplifier with finite gain

Library Electrical / Electronics

Description

+

-

This Op-Amp amplifies a voltage between the non-inverting “+” and inverting
“–” input with a specified gain. The resulting voltage is applied between the
output and ground terminal. Output and ground are electrically isolated from
the inputs. If you want to build a linear amplifier the output voltage must
somehow be fed back to the inverting input. The demo models plOpAmps and
plActiveLowPass demonstrate different applications with op-amps.

Parameter Open-loop gain
The voltage gain of the Op-Amp. The default is 1e6.

512

Op-Amp with Limited Output

Op-Amp with Limited Output

Purpose Ideal operational amplifier with limited output voltage

Library Electrical / Electronics

Description

+

-

This component amplifies a voltage between the non-inverting “+” and invert-
ing “–” input with a specified gain, taking into account the specified output
voltage limits. The resulting voltage is applied between the output and ground
terminal. Output and ground are electrically isolated from the inputs. If you
want to build a linear amplifier the output voltage must somehow be fed back
to the inverting input. The demo model plOpAmps shows a possible application
of the Limited Op-Amp.

Parameters Open-loop gain
The voltage gain of the amplifier if operating in linear mode. The default
is 1e6.

Output voltage limits
A two-element vector containing the minimum and maximum output volt-
age Vmin and Vmax in volts (V). The default is [−10 10].

513

14 Component Reference

Pause / Stop

Purpose Pauses or stops the simulation when the input becomes non-zero

Library System

Description This block pauses or stops the simulation when the input signal changes from
zero to a non-zero value.

Note In PLECS Standalone, pause blocks are ignored during analyses and
simulation scripts.

Parameter Action
Use pause or stop to specify whether the block should pause or stop the
simulation. To disable the block, use ignore.

514

Peak Current Controller

Peak Current Controller

Purpose Implement peak current mode control

Library Control / Modulators

Description This block implements current mode control in a switching converter. At the
beginning of each switching cycle, the output is set. When the Isense input ex-
ceeds the Iref input, the output is reset.

Parameters Switching frequency
The switching frequency of the output signal.

Minimum duty cycle
This sets the minimum time the output remains on for at the beginning of
each switching period. This value must be non-negative and less than the
maximum duty cycle.

Maximum duty cycle
This defines the maximum permissible duty cycle of the switch output. If
Isense < Iref , the output will turn off if the duty cycle exceeds this maxi-
mum value. The maximum duty cycle must be less than 100 %.

Slope compensation
Slope compensation can be applied to ensure stability when the output
duty cycle exceeds 50 %. Entering a parameter, Islope, reduces Iref during
each switching cycle as follows: I ′ref = Iref − Islope · t/Ts, where t is the
time elapsed from the start of the switching cycle and Ts is the switching
period. Slope compensation can be omitted by setting Islope to 0.

515

14 Component Reference

Periodic Average

Purpose Periodically average input signal over specified time

Library Control / Filters

Description This block periodically averages a continuous input signal u over the specified
averaging time T . The output y is updated at the end of each averaging pe-
riod. Mathematically, this block corresponds to a moving average filter where
the output is processed by a zero-order hold:

y(t) =
1

T

ˆ t

t−T
u(τ) dτ · rect

(
t− n+ 1/2

T

)
However, the implementation of Periodic Average filter is computationally less
expensive and more accurate than the continuous Moving Average (see page
500) filter.

The block is suited to determine average conduction losses of power semicon-
ductors. To determine average switching losses, use the Periodic Impulse Aver-
age (see page 517).

Parameter Averaging time
The length of the averaging period (in sec.) and the sample time of the
output signal. See also the Discrete-Periodic sample time type in section
“Sample Times” (on page 36).

Probe Signals Input
The input signal.

Output
The filtered output signal.

516

Periodic Impulse Average

Periodic Impulse Average

Purpose Periodically average Dirac impulses over specified time

Library Control / Filters

Description This block periodically averages an input signal u consisting of a series of
Dirac impulses δ. The output y is updated at the end of each averaging period
T . Mathematically, this block corresponds to a moving average filter where the
output is processed by a zero-order hold:

y(t) =
1

T

ˆ t

t−T
u(τ) dτ · rect

(
t− n+ 1/2

T

)
The block is suited to determine average switching losses of power semicon-
ductors. To determine average conduction losses, use the Periodic Average (see
page 516).

Parameter Averaging time
The length of the averaging period (in sec.) and the sample time of the
output signal. See also the Discrete-Periodic sample time type in section
“Sample Times” (on page 36).

Probe Signals Input
The input signal.

Output
The filtered output signal.

517

14 Component Reference

Permanent Magnet Synchronous Machine

Purpose Synchronous machine excited by permanent magnets

Library Electrical / Machines

Description This three-phase permanent magnet synchronous machine has a sinusoidal
back EMF.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. All electrical variables and parameters are
viewed from the stator side. In the component icon, phase a is marked with
a dot.

Electrical System

Ld

Rs
p∙ωm∙ φqid

vd

+

−

d-axis

Lq

Rs
p∙ωm∙ φd

vq

+

−

iq

q-axis

Stator flux linkages:

ϕq = Lq iq

ϕd = Ld id + ϕ′m

518

Permanent Magnet Synchronous Machine

The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage-behind-reactance formu-
lation.

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq rotor reference
frame. This results in constant coefficients in the differential equations mak-
ing the model numerically efficient. However, interfacing the dq model with
the external 3-phase network may be difficult. Since the coordinate transfor-
mations are based on voltage-controlled current sources, inductors and nat-
urally commutated devices such as diode rectifiers may not be directly con-
nected to the stator terminals.

Voltage behind Reactance This formulation allows for direct interfacing
of arbitrary external networks with the 3-phase stator terminals. The elec-
trical system is described in circuit form. Due to the resulting time-varying
inductance matrices, this implementation is numerically less efficient than the
traditional rotor reference frame.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (ϕd iq − ϕq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters Model
Implementation in the rotor reference frame or as a voltage behind reac-
tance.

Stator resistance
Armature or stator resistance Rs in Ω.

519

14 Component Reference

Stator inductance
A two-element vector containing the combined stator leakage and magne-
tizing inductance. Ld is referred to the d-axis and Lq to the q-axis of the
rotor. The values are in henries (H).

Flux induced by magnets
Constant flux linkage ϕ′m in Vs induced by the magnets in the stator wind-
ings.

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second (s−1).

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in A. Currents flow-
ing into the machine are considered positive.

Stator flux (dq)
The stator flux linkages ϕd and ϕq in the rotating reference frame in Vs:

ϕq = Lq iq

ϕd = Ld id + ϕ′m

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

520

Permanent Magnet Synchronous Machine

See also If the stator inductance is independent of the rotor angle, i.e. Ld = Lq, it is
computational more efficient to use the simplified Brushless DC Machine (see
page 333) with a sinusoidal back EMF. The parameters need to be converted
as follows:

L−M = Ld = Lq

KE = −ϕ′m · p

For back EMF shapes other than sinusoidal, and/or if the stator inductance
has a complex angle dependency please use the sophisticated model of the
Brushless DC Machine (see page 330). The sophisticated BLDC machine can
be configured as a PMSM with sinusoidal back EMF if the parameters are
converted as follows:

Kc,n = [0]

Ks,n = [−ϕ′m · p]

L0−M =
Ld + Lq

2

Lc,n = [0 Ld−Lq]

Ls,n = [0 0]

521

14 Component Reference

Pi-Section Line

Purpose Single-phase pi-section transmission line

Library Electrical / Passive Components

Description The Pi-Section Line implements a single-phase transmission line with param-
eters lumped in pi sections.

A transmission line is characterized by a uniform distribution of inductance,
resistance, capacitance and conductance along the line. However, in many
cases these distributed parameters can be approximated by cascading multiple
pi sections with discrete components. The figure below illustrates the electri-
cal circuit used for the line model.

R

C

2

G

2
C

C

2
GGC

G

2

L R L R L

Let l be the length of the line and n the number of pi sections representing
the line. The inductance L, the resistance R, the capacitance C and the con-
ductance G of the discrete elements can then be calculated from their per-
unit-length counterparts L′, R′, C ′ and G′ using the following equations:

L =
l

n
L′, R =

l

n
R′, C =

l

n
C ′, G =

l

n
G′

Parameters Inductance per unit length
The series line inductance L′ per unit length. If the length l is specified in
meters (m) the unit of L′ is henries per meter (H/m).

Resistance per unit length
The series line resistance R′ per unit length. If the length l is specified in
meters (m) the unit of R′ is ohms per meter (Ω/m).

Capacitance per unit length
The capacitance C ′ between the line conductors per unit length. If the
length l is specified in meters (m) the unit of C ′ is farads per meter (F/m).

522

Pi-Section Line

Conductance per unit length
The conductance G′ between the line conductors per unit length. If the
length l is specified in meters (m) the unit of G′ is siemens per meter
(S/m).

Length
The length l of the line. The unit of l must match the units L′, R′, C ′ and
G′ are based on.

Number of pi sections
Number of sections used to model the transmission line. The default is 3.

Initial voltage
A scalar value specifying the initial voltage of all capacitors at simulation
start, in volts (V).

523

14 Component Reference

Piece-wise Linear Resistor

Purpose Resistance defined by voltage-current pairs

Library Electrical / Passive Components

Description This component models a piece-wise linear resistor. The resistance character-
istic is defined by a set of voltage-current values.

u

i

U
1

U
3

U
4

I
1

I
3

I
4

The operating mode of the piece-wise linear resistor is illustrated in the di-
agram below. The voltage across the device dictates which internal switch is
closed. The values 0 V / 0 A must always be defined in the set of voltage / cur-
rent values to ensure the current is zero at zero voltage.

�� ��

����

�������

� �

��

��

�����������

�����

524

Piece-wise Linear Resistor

Note In order to model a saturation characteristic with n segments, this com-
ponent requires n ideal switches. It is therefore advisable to keep the number of
segments low in order to maintain a high simulation speed.

Parameters Voltage values
A vector of voltage values U in volts (V) that defines the piece-wise linear
characteristic. The voltage values must be strictly monotonic increasing.
At least two values are required. The value 0 must be present, the corre-
sponding current value must also be 0.

Current values
A vector of current values I in amperes (A) that defines the piece-wise lin-
ear characteristic. The current values must be strictly monotonic increas-
ing. The number of current values must match the number of voltage val-
ues. The value 0 must be present, the corresponding voltage value must
also be 0.

Probe Signals Resistor voltage drop
The voltage measured across the component, in volts (V). The positive ter-
minal of the resistor is marked with a small black dot.

Resistor current
The current flowing through the component, in amperes (A).

Resistor power
The power consumed by the resistor, in watts (W).

525

14 Component Reference

Planetary Gear Set

Purpose Ideal planetary gear set

Library Mechanical / Rotational / Components

Description This component models a planetary gear set with a sun gear, planet gears con-
nected via a carrier, and a ring gear. The component is divided into two sub-
components: a ring-planet gear subsystem and a sun-planet gear subsystem,
as shown in the figure below.

The planetary gear set has three external shafts: ring gear shaft (R), sun gear
shaft (S), and carrier shaft (C). The relation between the angular speeds of the
gears and carrier are described by the following equations:

Nsωs + Npωp − (Ns + Np)ωc = 0

Nrωr −Npωp − (Nr −Np)ωc = 0

where Nr, Ns, and Np correspond to the number of teeth on the ring, sun, and
each planet gear respectively, and ωr, ωs, ωp, and ωc correspond to the angular
speed of the ring gear, sun gear, planet gears, and carrier respectively.

These equations can further be simplified to

Nsωs + Nrωr = (Ns + Nr)ωc

The model includes an internal lumped moment of inertia representing the
planet gears (which is set to zero by default). The moments of inertia of the

526

Planetary Gear Set

ring and sun gears and the carrier can be modeled by connecting an Inertia
(see page 462) to the corresponding shaft.

Parameters
Main

Number of sun teeth
Number of teeth on the sun gear.

Number of planet teeth
Number of teeth on each planet gear.

Number of ring teeth
Number of teeth on the ring gear.

Planet gear

Moment of inertia of planet gear
Combined planet gear inertia J in Nms2.

Initial speed of planet gear
Initial angular speed of each planet gear (ωp) in rad

s .

Probe Signals Sun gear speed
Angular speed of sun gear (ωs) in rad

s .

Planet gear speed
Angular speed of each planet gear (ωp) in rad

s .

Carrier
Angular speed of carrier (ωc) in rad

s .

Ring gear speed
Angular speed of ring gear (ωr) in rad

s .

527

14 Component Reference

Polar to Rectangular

Purpose Convert polar coordinates to Cartesian coordinates

Library Control / Transformations

Description This block transforms a signal representing polar coordinates [r, θ] into rectan-
gular coordinates [x, y]:

x = r ∗ cos(θ)

y = r ∗ sin(θ)
where θ is in radians.

528

Position Sensor

Position Sensor

Purpose Output measured absolute or relative position as signal

Library Mechanical / Translational / Sensors

Description The Position Sensor measures the relative position of the flange marked with
a dot with respect to the other flange. If the other flange is connected to the
reference frame, the absolute position is measured.

Note Speed and position sensors are ideally compliant. Hence, if multiple
speed or position sensors are connected in series the speed or position measured
by an individual sensor is undefined. This produces a run-time error.

Parameters Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Initial position
The position at simulation start.

Probe Signal Position
The measured position.

529

14 Component Reference

Product

Purpose Multiply and divide scalar or vectorized input signals

Library Control / Math

Description The Product block multiplies or divides input signals. If the division operator
/ is used, the reciprocal of the input signal is used for multiplication.

In case of a single input, all elements of the input vector are multiplied. Vec-
torized input signals of the same width are multiplied element wise and result
in a vectorized output signal. If vectorized and scalar input signals are mixed,
the scalar input signals are expanded to the width of the vectorized input sig-
nals.

Parameter List of operators or number of inputs
The inputs can be specified either with
• a string containing * or / for each input and | for spacers, or
• a positive integer declaring the number of inputs to be multiplied.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signals Input i
The ith input signal.

Output
The block output signal.

530

Pulse Delay

Pulse Delay

Purpose Delay discrete-value input signal by fixed time

Library Control / Delays

Description The Pulse Delay applies a fixed time delay to an input signal that changes
at discrete instants and is otherwise constant. The signal can be a scalar or
vector.

Whenever a change of an input signal is detected at a simulation time t, the
Pulse Delay records the new signal value in an internal buffer and schedules
an event that forces the solver to make a step exactly at the simulation time
t+ TD in order to output the delayed input value.

A typical application of the Pulse Delay is to delay the pulses of a modulator.

Note

• The Pulse Delay should not be used to delay continuous signals as this will
lead to excessive memory consumption. Besides, the output of the Pulse De-
lay is always piece-wise constant. To delay continuously changing signals,
use the continuous Transport Delay (see page 686).

• The Pulse Delay should also not be used to delay signals that have a fixed
sample time. To delay such signals, use a Zero Order Hold (see page 725) or
a Delay (see page 360) depending on the duration of the delay with respect to
the sample time of the input signal.
Suppose that the input signal has a sample time Ts and you want to delay it
by a time TD. Calculate the delay order O = bTD

Ts
c (i.e. the integer part of the

division) and an offset time To = mod(TD, Ts). If O is zero, use a Zero Order
Hold with the sample time [Ts, To]. If O is greater than zero, use a Delay with
the sample time [Ts, To] and the delay order O. For more information regard-
ing sample times, see “Sample Times” (on page 36).

Parameters Time delay Td

Time by which the input signal is delayed.

Initial output
Output value after simulation start before the input values appear at the
output.

531

14 Component Reference

Initial buffer size
Size of the internal ring buffer at simulation start. The buffer size will be
increased during the simulation if required.

532

Pulse Generator

Pulse Generator

Purpose Generate periodic rectangular pulses

Library Control / Sources

Description The Pulse Generator outputs a signal that periodically switches between a
high- and low-state.

Parameters High-state output
The value of the output signal in the high-state.

Low-state output
The value of the output signal in the low-state.

Frequency
The frequency of the output signal in hertz (Hz).

Duty cycle
The fraction of the period length during which the output signal is in the
high-state. The duty cycle value must be in the range [0 1]. For example,
a value of 0.1 means that the signal is in the high-state for the first 10%
of the period time.

Phase delay
The phase delay in seconds (s). If the phase delay is 0 the period begins at
the start of the high state.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signal Output
The output signal of the pulse generator.

533

14 Component Reference

Quantizer

Purpose Apply uniform quantization to input signal

Library Control / Discontinuous

Description The Quantizer maps the input signal to an integer multiple of the quantiza-
tion interval:

y = q ∗ round

(
u

q

)

Parameters Quantization interval
The quantum q used in the mapping function.

Step detection
When set to on, the Quantizer produces a zero-crossing signal that en-
ables the solver to detect the precise instants, at which the output needs
to change. This may be necessary when quantizing a continuous signal.

When set to off, the Quantizer will not influence the step size of the
solver.

Probe Signals Input
The input signal.

Output
The output signal.

534

Rack and Pinion

Rack and Pinion

Purpose Ideal conversion between translational and rotational motion

Libraries Mechanical / Translational / Components
Mechanical / Rotational / Components

Description The Rack and Pinion models an ideal converter between translational and ro-
tational motion. The relation between the torque, force and speeds of the two
flanges is described with the following equations:

v = R · ω
τ = R · F

where R is the pinion radius.

Parameter Pinion radius
The pinion radius R. A negative value will cause the flanges to move in
opposite directions.

535

14 Component Reference

Ramp

Purpose Generate constantly rising or falling signal

Library Control / Sources

Description The Ramp block generates a signal that increases or decreases linearly over
time once the start time is reached. The output can be limited to a final value.

Parameters Slope
The slope of the signal (per second).

Start time
The time at which the ramp starts.

Initial output
The output value before the start time is reached.

Final output
The final value for the output signal. If the parameter is set to inf the
output signal is unlimited.

Probe Signal Output
The output signal of the pulse generator.

536

Random Numbers

Random Numbers

Purpose Generate uniformly distributed random numbers

Library Control / Sources

Description The Random Numbers block generates uniformly distributed random num-
bers. The boundaries of the generated values can be configured in the compo-
nent dialog. The figure below illustrates the distribution for two different sets
of parameters. The seed of the generator initializes the algorithm at the sim-

x

\ (x)

ï4 ï2 0 2 4

0.1

0.2

0.3

0.4 [min, max] = [+/ï 1.5]

 [min, max] = [+/ï 4.0]

ulation start. For the same seed, the sequence of random numbers is repro-
duced in every simulation run. If this behavior is undesired the system time
can be used as a seed. To minimize correlation effects, it is recommended to
use different seeds if multiple random generators are used in one model.

Parameters Minimum
The lower boundary of the random numbers.

Maximum
The upper boundary of the random numbers.

Seed
The seed used to initialize the Random Numbers generator.

Sample Time
The sampling period used for generating random output values.

Reference Mersenne Twister: http://en.wikipedia.org/wiki/Mersenne_twister

537

http://en.wikipedia.org/wiki/Mersenne_twister

14 Component Reference

Rate Limiter

Purpose Limit rising and falling rate of change

Library Control / Discontinuous

Description The Rate Limiter restricts the first derivative of the signal passing through it.
While the rate of change is within the specified limits, the output follows the
input. When the rate of change exceeds the rising or falling limit, the output
falls behind the input with a fixed slope until output and input become equal
again.

Parameters Rising rate limit
The maximum rate of change of the output signal (typically positive).

Falling rate limit
The minimum rate of change of the output signal (typically negative).

Probe Signals Input
The input signal.

Output
The output signal.

538

Rectangular to Polar

Rectangular to Polar

Purpose Convert Cartesian coordinates to polar coordinates

Library Control / Transformations

Description This block transforms a signal representing rectangular coordinates [x, y] into
polar coordinates [r, θ]:

r =
√
x2 + y2

θ = atan2(x, y)

θ is calculated in the range −π ≤ θ ≤ π.

539

14 Component Reference

Relational Operator

Purpose Compare two input signals

Library Control / Logical

Description The Relational Operator compares two input signals. If the comparison is true
it outputs 1, otherwise 0. The first input is marked with a dot.

Parameter Relational operator
Chooses which comparison operation is applied to the input signals. Avail-
able operators are
• equal (==),
• unequal (∼=),
• less (<),
• less or equal (<=),
• greater or equal (>=),
• greater (>).

Probe Signals Input
The input signals.

Output
The output signal.

540

Relay

Relay

Purpose Toggle between on- and off-state with configurable threshold

Library Control / Discontinuous

Description The output of the Relay block depends on its internal state. If the input sig-
nal exceeds the upper threshold, the relay will be in the on-state. It will be in
the off-state if the inputs is less than the lower threshold. The relay does not
change for input values between the thresholds.

Parameters Upper threshold
The highest value that the input signal may reach before the state
changes to the on-state.

Lower threshold
The lowest value that the input signal may reach before the state changes
to the off-state.

On-state output
The value of the output signal while the relay is in the on-state.

Off-state output
The value of the output signal while the relay is in the off-state.

Initial state
The state of the relay at simulation start. Possible values are on and off.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signals Input
The block input signal.

Output
The block output signal.

541

14 Component Reference

Resistor

Purpose Ideal resistor

Library Electrical / Passive Components

Description This component provides an ideal resistor between its two electrical termi-
nals. See section “Configuring PLECS” (on page 41) for information on how to
change the graphical representation of resistors.

Parameter Resistance
The resistance in ohms (Ω). All positive and negative values are accepted,
including 0 and inf (∞). The default is 1.

In a vectorized component, all internal resistors have the same resistance
if the parameter is a scalar. To specify the resistances individually use a
vector [R1 R2 . . . Rn] . The length n of the vector determines the width of
the component.

Probe Signals When the resistor is probed, a small dot in the component icon marks the pos-
itive terminal.

Resistor voltage
The voltage measured across the resistor from the positive to the negative
terminal, in volts (V).

Resistor current
The current flowing through the resistor, in amperes (A). A current enter-
ing the resistor at the positive terminal is counted positive.

Resistor power
The power consumed by the resistor, in watts (W).

542

Rotational Algebraic Component

Rotational Algebraic Component

Purpose Define an algebraic constraint in terms of torque and angular speed

Library Mechanical / Rotational / Components

Description The Rotational Algebraic Component enforces an arbitrary algebraic con-
straint involving torque and angular speed.

The output signal “ω” measures the angular speed of the marked flange with
respect to the unmarked one. The output signal “τ” measures the torque flow
from the unmarked towards the marked flange. The two output signals must
affect the input signal “0” by means of a direct feedthrough path. The compo-
nent ensures that the input signal is zero at all times.

The direct feedthrough path defines a function f(ω, τ), which in turn implicitly
determines the characteristic curve of the component through the constraint
f(ω, τ) = 0. For instance, the choice f(ω, τ) := τ + D · ω causes the Rota-
tional Algebraic Component to act as a Rotational Damper (see page 547) with
damping constant D.

The Rotational Algebraic Component offers no direct way to specify an initial
displacement. In case you need to do so, place a Rotational Damper with zero
damping constant in parallel to the component and set the initial displace-
ment property thereof.

By way of illustration, the following schematic shows a possible implementa-
tion of a rotational damper with variable damping constant and prescribed
initial displacement:

543

14 Component Reference

Note The Rotational Algebraic Component creates an algebraic loop. See sec-
tion “Block Sorting” (on page 29) for more information on algebraic loops.

Probe Signals Component torque
The torque flow from the unmarked towards the marked flange.

Component speed
The angular speed of the marked flange with respect to the unmarked one.

Component power
The power consumed by the component.

544

Rotational Backlash

Rotational Backlash

Purpose Ideal rotational backlash

Library Mechanical / Rotational / Components

Description The Rotational Backlash models an ideal symmetrical, two-sided Hard Stop
(see page 550) in a rotational system, which restricts the relative displace-
ment of the two flanges between an upper and lower limit of ± b

2 . While the
displacement is within the limits, no torque is transmitted. When the dis-
placement hits either limit, the flanges become rigidly connected until the
transmitted torque reverses.

Parameters Total backlash
The total permitted displacement b between the flanges, in radians.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured
anywhere in the system. Otherwise, this parameter can be left blank.

Probe Signals Torque
The transmitted torque flowing from the unmarked to the marked flange,
in Newton meters (Nm).

Displacement
The displacement of the marked flange with respect to the unmarked
flange, in radians.

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1
in upper limit.

545

14 Component Reference

Rotational Clutch

Purpose Ideal rotational clutch

Library Mechanical / Rotational / Components

Description The Rotational Clutch models an ideal clutch in a rotational system. When
engaged, it makes an ideally rigid connection between the flanges; when dis-
engaged, it transmits zero torque. The clutch engages when the input signal
becomes non-zero and disengages when the input signal becomes zero.

Parameters Initial state
The initial state (engaged/disengaged) of the clutch.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured
anywhere in the system. Otherwise, this parameter can be left blank.

546

Rotational Damper

Rotational Damper

Purpose Ideal viscous rotational damper

Library Mechanical / Rotational / Components

Description The Rotational Damper models an ideal linear damper in a rotational system
described with the following equations:

τ = −D · ω

where τ is the torque flow from the unmarked towards the marked flange and
ω is the angular speed of the marked flange with respect to the unmarked
one.

Parameters Damper constant
The damping (viscous friction) constant D, in Nms

rad .

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured
anywhere in the system. Otherwise, this parameter can be left blank.

547

14 Component Reference

Rotational Friction

Purpose Ideal rotational stick/slip friction

Library Mechanical / Rotational / Components

Description The Rotational Friction models any combination of static, Coulomb and vis-
cous friction between two flanges in a rotational system. While the component
is stuck, it exerts whatever torque is necessary in order to maintain zero rela-
tive speed between the flanges, up to the limit of the breakaway torque τbrk.
When the breakaway torque is exceeded, the flanges begin sliding against
each other, and the component exerts a torque that consists of the Coulomb
friction torque τC and a speed-dependent viscous friction torque cv · ω.

The figure below shows the speed/torque characteristic and the state chart
of the component. Note that the friction torque is opposed to the movement,
hence the negative sign.

Sticking

Sliding
backward

Sliding
forward

τ > τbrk τ < -τbrk

ω > 0 ω < 0

τbrk

ω

-τ

τC
cv⋅ω

Parameters Breakaway friction torque
The maximum magnitude of the stiction torque τbrk, in Newton meters
Nm. Must be greater than or equal to zero.

Coulomb friction torque
The magnitude of the (constant) Coulomb friction torque τC, in Newton
meters Nm. Must be greater than or equal to zero and less than or equal
to the breakaway friction torque.

Viscous friction coefficient
The proportionality coefficient cv that determines the speed dependent vis-
cous friction torque, in Nms

rad .

548

Rotational Friction

Probe Signals Torque
The transmitted torque τ flowing from the unmarked to the marked
flange, in Newton meters (Nm).

Speed
The angular speed ω of the marked flange with respect to the unmarked
flange, in rad

s .

State
The internal state of the component: -1 sliding backward, 0 stuck, +1 slid-
ing forward.

549

14 Component Reference

Rotational Hard Stop

Purpose Ideal rotational hard stop

Library Mechanical / Rotational / Components

Description The Rotational Hard Stop models an ideal one- or two-sided hard stop in a ro-
tational system, which restricts the relative displacement of the two flanges
between an upper and lower limit. While the displacement is within the lim-
its, no torque is transmitted. When the displacement hits either limit, the dis-
placement is clamped at the limit and the flanges become rigidly connected
until the transmitted torque reverses.

The figure below shows the displacement/torque characteristic and the state
chart of the component.

Inside
limits

Lower
limit

Upper
limit

θ < θmin

θ := θmin θ := θmax

θ > θmax

τ < 0 τ > 0

τ := 0
θmin θmax θ

τ

Parameters Upper limit
The maximum displacement θmax between the flanges. Set to inf to dis-
able this limit.

Lower limit
The minimum displacement θmin between the flanges. Set to -inf to dis-
able this limit.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured
anywhere in the system. Otherwise, this parameter can be left blank.

550

Rotational Hard Stop

Probe Signals Torque
The transmitted torque τ flowing from the unmarked to the marked
flange, in Newton meters (Nm).

Displacement
The displacement θ of the marked flange with respect to the unmarked
flange, in radians.

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1
in upper limit.

551

14 Component Reference

Rotational Model Settings

Purpose Configure settings for an individual mechanical model.

Library Mechanical / Rotational / Model Settings

Description The Rotational Model Settings block lets you configure parameter settings
that influence the code generation for a particular mechanical system, see also
“Code Generation for Physical Systems” (on page 257).

The block affects the mechanical system that it is attached to by its rotational
terminal. At most one Model Settings block may be attached to an individ-
ual state-space system. A mechanical model can be split into multiple state-
space systems if the underlying model equations are fully decoupled. Note
that a rotational system and a translational system that are coupled e.g. with
a Rack and Pinion (see page 535) have coupled model equations. See also the
options Enable state-space splitting and Display state-space splitting in
the “Simulation Parameters” (on page 103).

Parameters Switching algorithm
This parameter allows you two choose between two algorithms to deter-
mine the clutch states in the generated code. See “Switching Algorithm”
(on page 259) for details.

Matrix coding style
This setting allows you to specify the format used for storing the state-
space matrices for a physical model. When set to sparse, only the non-
zero matrix entries and their row and column indices are stored. When
set to full, matrices are stored as full m × n arrays. When set to full
(inlined), the matrices are additionally embedded in helper functions,
which may enable the compiler to further optimize the matrix-vector-
multiplications at the cost of increased code size.

Topologies
This parameter lets you specify a matrix containing the combinations of
clutch states, for which code should be generated, see also “Reducing the
Code Size” (on page 258). The columns represent the clutch elements of
the physical model and each row represents one combination of clutch
states (zero for an open clutch and non-zero for a closed clutch).

The default is an empty matrix [], which means that all possible combina-
tions are included.

552

Rotational Port

Rotational Port

Purpose Add rotational flange to subsystem

Library Mechanical / Rotational / Components

Description Rotational ports are used to establish rotational mechanical connections be-
tween a schematic and the subschematic of a subsystem (see page 603). If you
copy a Rotational Port block into the schematic of a subsystem, a terminal will
be created on the subsystem block. The name of the port block will appear as
the terminal label. If you choose to hide the block name by unselecting the
show name option in the block menu, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by
using the middle mouse button.

Rotational Ports in a Top-Level Schematic

In PLECS Blockset, if a Rotational Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding rota-
tional terminal, which may be connected with other rotational terminals of
the same or a different PLECS Circuit block. The Rotational Port is also as-
signed a unique physical port number. Together with the parameter Location
on circuit block the port number determines the position of the rotational
terminal of the PLECS Circuit block.

For compatibility reasons you can also place an Rotational Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Port number
If a Rotational Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

Location on circuit block
If a Rotational Port is placed in a top-level schematic in PLECS Blockset,
this parameter specifies the side of the PLECS Circuit block on which the
corresponding terminal appears. By convention, left refers to the side
on which also input terminals are shown, and right refers to the side on
which also output terminals are shown.

553

14 Component Reference

Rotational Reference

Purpose Connect to common rotational reference frame

Library Mechanical / Rotational / Components

Description The Rotational Reference implements a connection to the rotational reference
frame that has a fixed absolute angle of zero.

554

Rotational Speed (Constant)

Rotational Speed (Constant)

Purpose Maintain constant rotational speed

Library Mechanical / Rotational / Sources

Description The Constant Rotational Speed maintains a constant angular speed between
its two flanges regardless of the torque required. The speed is considered posi-
tive at the flange marked with a “+”.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive an inertia.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Speed
The magnitude of the speed, in rad

s . The default value is 1.

Probe Signals Torque
The generated torque τ flowing from the unmarked to the marked flange,
in Newton meters (Nm).

Speed
The angular speed, in rad

s .

555

14 Component Reference

Rotational Speed (Controlled)

Purpose Maintain variable rotational speed

Library Mechanical / Rotational / Sources

Description The Controlled Rotational Speed maintains a variable angular speed between
its two flanges regardless of the torque required. The speed is considered pos-
itive at the flange marked with a “+”. The momentary speed is determined by
the signal fed into the input of the component.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive an inertia.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input
variable from the state-space equations and substitute it with the corre-
sponding output variables. The default is off.

Probe Signals Torque
The generated torque τ flowing from the unmarked to the marked flange,
in Newton meters (Nm).

Speed
The angular speed, in rad

s .

556

Rotational Speed Sensor

Rotational Speed Sensor

Purpose Output measured angular speed as signal

Library Mechanical / Rotational / Sensors

Description The Rotational Speed Sensor measures the angular speed of the flange
marked with a dot with respect to the other flange.

Note Speed and angle sensors are ideally compliant. Hence, if multiple speed
or angle sensors are connected in series the speed or angle measured by an in-
dividual sensor is undefined. This produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Probe Signal Speed
The measured angular speed, in rad

s .

557

14 Component Reference

Rounding

Purpose Round floating point signal to integer values

Library Control / Math

Description This component rounds the value of a floating point signal on its input to an
integer value. The rounding algorithm can be selected in the component pa-
rameter:

floor
The output is the largest integer not greater than the input, for example
floor(1.7) = 1 and floor(−1.3) = −2.

ceil
The output is the smallest integer not less than the input, for example
ceil(1.3) = 2 and ceil(−1.7) = −1.

round
The output is the integer nearest to the input, for example round(1.4) = 1,
round(−1.3) = −1 and round(−1.5) = −2.

fixed
The output is the integer value of the input with all decimal places trun-
cated, for example fixed(1.7) = 1 and fixed(−1.7) = −1.

Parameter Operation
The rounding algorithm as described above.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signals Input
The block input signal.

Output
The block output signal.

558

Saturable Capacitor

Saturable Capacitor

Purpose Capacitor with piece-wise linear saturation

Library Electrical / Passive Components

Description This component provides a saturable capacitor between its two electrical ter-
minals. The capacitor has a symmetrical piece-wise linear saturation charac-
teristic defined by positive voltage/charge pairs.

Note In order to model a saturation characteristic with n segments, this com-
ponent requires n ideal capacitors and 2(n − 1) ideal switches. It is therefore
advisable to use as few segments as possible.

Parameters Voltage values
A vector of positive voltage values in volts (V) defining the piece-wise lin-
ear saturation characteristic. The voltage values must be positive and
strictly monotonic increasing. At least one value is required.

Charge values
A vector of positive charge values in As defining the piece-wise linear sat-
uration characteristic. The charge values must be positive and strictly
monotonic increasing. The number of charge values must match the num-
ber of voltage values.

Initial voltage
The initial voltage across the capacitor at simulation start, in volts (V).
This parameter may either be a scalar or a vector corresponding to the im-
plicit width of the component. The positive pole is marked with a “+”. The
initial voltage default is 0.

Probe Signals Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

Capacitor current
The current flowing through the capacitor, in amperes (A).

Saturation level
The saturation level indicates which sector of the piece-wise linear charac-
teristic is currently applied. During linear operation, i.e. operation in the

559

14 Component Reference

first sector, the saturation level is 0. The saturation level is negative for
negative charge and voltage values.

560

Saturable Core

Saturable Core

Purpose Magnetic core element with saturation

Library Magnetic

Description This component models a segment of a magnetic core. It establishes a non-
linear relationship between the magnetic field strength H and the flux density
B to model saturation effects. The user can choose between the following fit-
ting functions:

atan fit

The atan fit is based on the arctangent function:

B =
2

π
Bsat tan−1

(
πH

2a

)
+ µsatH

coth fit

The coth fit was adapted from the Langevian equation for bulk magnetization
without interdomain coupling, and is given as:

B = Bsat

(
coth

3H

a
− a

3H

)
+ µsatH

Both fitting functions have three degrees of freedom which are set by the coef-
ficients µsat, Bsat and a. µsat is the fully saturated permeability, which usually
corresponds to the magnetic constant µ0, i.e. the permeability of air. Bsat de-
fines the knee of the saturation transition between unsaturated and saturated
permeability:

Bsat = (B − µsatH)
∣∣∣
H→∞

The coefficient a is determined by the unsaturated permeability µunsat at H =
0:

a = Bsat/ (µunsat − µsat)

561

14 Component Reference

coth fit

atan fit

µunsat

µsat

H

B

Bsat

The figure below illustrates the saturation characteristics for both fitting func-
tions. The saturation curves differ only around the transition between unsat-
urated and saturated permeability. The coth fit expresses a slightly tighter
transition than the atan fit.

Parameters Fitting functions
Saturation characteristic modeled with atan or coth fit.

Cross-sectional area
Cross-sectional area A of the flux path, in m2.

Length of flux path
Length l of the flux path, in m.

Unsaturated rel. permeability
Relative permeability µr,unsat = µunsat/µ0 of the core material for H → 0.

Saturated rel. permeability
Relative permeability µr,sat = µsat/µ0 of the core material for H →∞.

Flux density saturation
Knee Bsat of the saturation transition between unsaturated and saturated
permeability.

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

562

Saturable Core

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the core element, in A/m.

Flux density
The magnetic flux density B in the core element, in teslas (T).

563

14 Component Reference

Saturable Inductor

Purpose Inductor with piece-wise linear saturation

Library Electrical / Passive Components

Description This component provides a saturable inductor between its two electrical termi-
nals. The inductor has a symmetrical piece-wise linear saturation characteris-
tic defined by positive current/flux pairs.

 L
0

1

i

Ψ

I
1

I
2

I
3

Ψ
1

Ψ
2

Ψ
3

The operating mode of the saturable inductor is illustrated in the schematic
below. In the unsaturated state the current flows only through the main in-
ductor L0. When the absolute value of the current exceeds the threshold I1,

����������������

�� ��

�

��

�����

564

Saturable Inductor

the breaker in series with the auxiliary inductor L1 is closed. The differential
inductivity of the component thus becomes Ldiff = L0L1

L0+L1
. On the other hand,

the total inductivity is calculated as Ltot = L0i0+L1i1
i0+i1

, where i0 and i1 are the
momentary inductor currents.

Note In order to model a saturation characteristic with n segments, this com-
ponent requires n ideal inductors and 2(n − 1) ideal switches. It is therefore
advisable to use as few segments as possible.

Parameters Current values
A vector of positive current values I in amperes (A) defining the piece-wise
linear saturation characteristic. The current values must be positive and
strictly monotonic increasing. At least one value is required.

Flux values
A vector of positive flux values Ψ in Vs defining the piece-wise linear satu-
ration characteristic. The flux values must be positive and strictly mono-
tonic increasing. The number of flux values must match the number of
current values.

Initial current
The initial current through the inductor at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to the
implicit width of the component. The direction of a positive initial current
is indicated by a small arrow at one of the terminals. The initial current
default is 0.

Probe Signals Inductor current
The current flowing through the inductor, in amperes (A). The direction of
a positive current is indicated with a small arrow at one of the terminals.

Inductor voltage
The voltage measured across the inductor, in volts (V).

Saturation level
The saturation level indicates which sector of the piece-wise linear charac-
teristic is currently applied. During linear operation, i.e. operation in the
first sector, the saturation level is 0. The saturation level is negative for
negative flux and current values.

565

14 Component Reference

Saturable Transformers

Purpose Single-phase transformers with two resp. three windings and core saturation

Library Electrical / Passive Components

Description These transformers model two or three coupled windings on the same core.

 L
m,0

1

i
m

Ψ
m

i
m

(1) i
m

(2) i
m

(3)

Ψ
m

(1)

Ψ
m

(2)

Ψ
m

(3)

The core saturation characteristic is piece-wise linear and is modeled using
the Saturable Inductor (see page 564). The magnetizing current im and flux
Ψm value pairs are referred to the primary side. To model a transformer with-
out saturation enter 1 as the magnetizing current values and the desired mag-
netizing inductance Lm as the flux values. A stiff Simulink solver is recom-
mended if the iron losses are not negligible, i.e. Rfe is not infinite.

In the transformer symbol, the primary side winding is marked with a little
circle. The secondary winding is marked with a dot at the outside terminal,
the tertiary winding with a dot at the inside terminal.

Parameters Leakage inductance
A vector containing the leakage inductance of the primary side L1, the sec-
ondary side L2 and, if applicable, the tertiary side L3. The inductivity is
given in henries (H).

Winding resistance
A vector containing the resistance of the primary winding R1, the sec-
ondary winding R2 and, if applicable, the tertiary winding R3, in ohms (Ω).

566

Saturable Transformers

No. of turns
A vector containing the number of turns of the primary winding n1, the
secondary winding n2 and the tertiary winding n3, if applicable.

Magnetizing current values
A vector of positive current values in amperes (A) defining the piece-wise
linear saturation characteristic of the transformer legs. The current values
must be positive and strictly monotonic increasing. At least one value is
required.

Magnetizing flux values
A vector of positive flux values in Vs defining the piece-wise linear satura-
tion characteristic. The flux values must be positive and strictly monotonic
increasing. The number of flux values must match the number of current
values.

Core loss resistance
An equivalent resistance Rfe representing the iron losses in the trans-
former core. The value in ohms (Ω) is referred to the primary side.

Initial current
A vector containing the initial currents on the primary side i1, the sec-
ondary side i2 and the tertiary side i3, if applicable. The currents are
given in amperes (A) and considered positive if flowing into the trans-
former at the marked terminals. The default is [0 0 0].

567

14 Component Reference

Saturation

Purpose Limit input signal to upper and/or lower value

Library Control / Discontinuous

Description The saturation block limits a signal to an upper and/or lower value. If the in-
put signal is within the saturation limits the output signal is identical to the
input signal.

Parameters Upper limit
The highest value that the input signal may reach before the output signal
is clipped. If the value is set to inf the output is unlimited.

Lower limit
The lowest value that the input signal may reach before the output signal
is clipped. If the value is set to -inf the output is unlimited.

Probe Signals Input
The block input signal.

Output
The block output signal.

568

Sawtooth PWM

Sawtooth PWM

Purpose Generate PWM signal using sawtooth carrier

Library Control / Modulators

Description 2-level PWM generator with a sawtooth carrier. The input m is the modula-
tion index, and the output s is the switching function. If the modulation index
is a vector the switching function is also a vector of the same width.

The block can be used to control the IGBT Converter (see page 426) or the
ideal Converter (see page 411). In these cases the modulation index must have
a width of 3 to match the number of inverter legs.

The following figures illustrate different sampling methods offered by the
modulator block. In the figure on the left, Natural Sampling is used. The right
figure shows Regular Sampling, i.e. the modulation index is updated at the
vertical flanks of the carrier. In both figures carrier signals with falling ramps
are employed.

−1

0

1

Sw
itc

hi
ng

 f
un

ct
io

n

−1

0

1

Natural Sampling

M
od

ul
at

io
n

in
de

x

1/f

Regular Sampling

1/f

569

14 Component Reference

Parameters Sampling
Choose between Natural and Regular Sampling.

Ramp
Choose between rising and falling ramps in the carrier signal.

Carrier frequency
The frequency f of the carrier signal, in Hz.

Carrier offset
The time offset of the carrier signal, in p.u. of the carrier period.

Input limits
The range of the modulation index. The default is [-1 1].

Output values
Values of the switching function in off-state and on-state. The default is
[-1 1].

570

Sawtooth PWM (3-Level)

Sawtooth PWM (3-Level)

Purpose Generate 3-level PWM signal using sawtooth carriers

Library Control / Modulators

Description 3-level PWM generator with a sawtooth carrier. The input m is the modula-
tion index. The switching function s outputs either 1, 0 or -1. If the modula-
tion index is a vector the switching function is also a vector of the same width.

The block can be used to control the 3-Level IGBT Converter (see page 416)
or the ideal 3-Level Converter (see page 410). In these cases the modulation
index must have a width of 3 to match the number of inverter legs.

The figures below illustrate different sampling methods offered by the modula-
tor block. In the left figure, Natural Sampling is used. The right figure shows
Regular Sampling, i.e. the modulation index is updated at the vertical flanks
of the carrier. In both figures carrier signals with rising ramps are employed.

−1

0

1

Sw
itc

hi
ng

 f
un

ct
io

n

−1

0

1

Natural sampling

M
od

ul
at

io
n

in
de

x

1/f

Regular sampling

1/f

571

14 Component Reference

Parameters Sampling
Choose between Natural and Regular Sampling.

Ramp
Choose between rising and falling ramps in the carrier signal.

Carrier frequency
The frequency f of the carrier signal, in Hz.

Carrier offset
The time offset of the carrier signal, in p.u. of the carrier period.

Input limits
The range of the modulation index. The default is [-1 1].

572

Scope

Scope

Purpose Display simulation results versus time

Library System

Description The PLECS scope displays the measured signals of a simulation. It can be
used in PLECS circuits as well as in Simulink models.

A number of analysis tools and data display options allow detailed analysis
of the measured signals. For more information on how to work with the scope
see section “Using the PLECS Scope” (on page 91).

Parameters
Scope Setup

Number of plots
This parameter specifies the number of plots shown in the scope window.
Each plot corresponds to a terminal on the outside of the block. For each
plot, a tab is displayed in the lower part of the dialog where the plot set-
tings can be edited.

Sample time
The block sample time used to sample the input signals. The default is -1
(inherited). Other valid settings are 0 (continuous) or a valid fixed-step
discrete sample time pair (see “Sample Times” on page 36).

Limit samples
If this option is selected, the PLECS scope will only save the last n sample
values during a simulation. It can be used in long simulations to limit the
amount of memory that is used by PLECS. If the option is unchecked, all
sample values are stored in memory.

Time Axis Parameters

Display time axis
The time axis is either shown underneath each plot or underneath the last
plot only.

Time axis label
The time axis label is shown below the time axis in the scope.

573

14 Component Reference

Time range
The time range value determines the initial time range that is displayed
in the scope. If set to auto, the simulation time range is used.

Scrolling mode
The scrolling mode determines the way, in which the x-axis is scrolled if
during a simulation the current simulation time goes beyond the right x-
axis limit.

In the paged mode, the plots are cleared when the simulation time
reaches the right limit and the x-axis is scrolled by one full x-axis span,
i.e. the former right limit becomes the new left limit.

In the continuous mode, the plots are continuously scrolled so that new
data is always drawn at the right plot border. Note that this mode may af-
fect runtime performance as it causes frequent updates of relatively large
screen areas.

Individual Plot Parameters

Title
The name which is displayed above the plot.

Axis label
The axis label is displayed on the left of the y-axis.

Y-limits
The initial lower and upper bound of the y-axis. If set to auto, the y-axis
limits are automatically chosen based on the minimum and maximum
curve value in the visible time range. If you check the Keep baseline op-
tion, the limits are chosen so that the specified baseline value is always
included.

574

Set/Reset Switch

Set/Reset Switch

Purpose Bistable on-off switch

Library Electrical / Switches

Description This component provides an ideal short or open circuit between its two elec-
trical terminals. The switch closes when the closing signal (the upper input in
the component icon) becomes non-zero. It opens when the opening signal (the
lower input) becomes non-zero. The Set/Reset Switch provides the basis for all
other switches and power semiconductor models in PLECS.

Parameters Initial conductivity
Initial conduction state of the switch. The switch is initially open if the pa-
rameter evaluates to zero, otherwise closed. This parameter may either be
a scalar or a vector corresponding to the implicit width of the component.
The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115).

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals Switch conductivity
Conduction state of the switch. The signal outputs 0 if the switch is open,
and 1 if it is closed.

Switch temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Switch conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

575

14 Component Reference

Switch switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

576

Signal Demultiplexer

Signal Demultiplexer

Purpose Split vectorized signal

Library System

Description This demultiplexer extracts the components of a input signal and outputs
them as separate signals. The output signals may be scalars or vectors. In the
block icon, the first output is marked with a dot.

Parameter Number of outputs
This parameter allows you to specify the number and width of the output
signals. You can choose between the following formats for this parameter:

Scalar: A scalar specifies the number of scalar outputs. If this format is
used all output signals have a width of 1.

Vector: The length of the vector determines the number of outputs. Each
element specifies the width of the corresponding output signal.

577

14 Component Reference

Signal From

Purpose Reference signal from Signal Goto block by name

Library System

Description The Signal From block references another signal from a Signal Goto block. All
Signal From blocks connect to the Signal Goto block with the same tag within
the given scope. If no matching Signal Goto block is found an error message
will be displayed when starting a simulation.

The parameter dialog of the Signal From block provides a link to the corre-
sponding Signal Goto block. Note that the link is not updated until you click
the Apply button after changing the tag name or scope.

Parameters Tag name:
The tag names of the Signal From and Signal Goto blocks must match to
establish a connection.

Scope:
The scope specifies the search depth for the matching Signal Goto block.
Using the value Global the complete PLECS circuit is searched. When
set to Schematic only the schematic containing the Signal From block
is searched. The setting Masked Subsystem causes a lookup within the
hierarchy of the masked subsystem in which the block is contained. If the
block is not contained in a masked subsystem a global lookup is done.

578

Signal Goto

Signal Goto

Purpose Make signal available by name

Library System

Description The Signal Goto block forwards its input signal to a number of Signal From
blocks within the same scope. All Signal From blocks connect to the Signal
Goto block with the same tag within the given scope. It is not allowed to have
multiple Signal Goto blocks with the same tag name within the same scope.

The parameter dialog of the Signal Goto block provides a list of links to the
corresponding blocks, i.e. all Signal From blocks with a matching tag name
and scope. Note that the list is not updated until you click the Apply button
after changing the tag name or scope.

Parameters Tag name:
The tag names of the Signal From and Signal Goto blocks must match to
establish a connection.

Scope:
The scope specifies the search depth for the matching Signal From blocks.
Using the value Global the complete PLECS circuit is searched. When
set to Schematic only the schematic containing the Signal From block
is searched. The setting Masked Subsystem causes a lookup within the
hierarchy of the masked subsystem in which the block is contained. If the
block is not contained in a masked subsystem a global lookup is done.

579

14 Component Reference

Signal Inport

Purpose Add signal input connector to subsystem

Library System

Description

1

Inports are used to feed signals from a schematic into a subschematic. In
PLECS Blockset, inports are also used to feed signals from a Simulink model
into a PLECS circuit. If you copy an input block into a schematic an input ter-
minal will be created on the corresponding subsystem block. The name of the
input block will appear as the terminal label. If you choose to hide the block
name by unselecting the show button in the dialog box the terminal label will
also disappear.

Input Blocks in a Top-Level Circuit

If an input block is placed in a top-level schematic a unique input port number
is assigned to the block. In PLECS Blockset, this port number determines the
position of the corresponding input terminal of the PLECS Circuit block in the
Simulink model.

For top-level inputs in PLECS Blockset you can also specify whether the in-
put signal is used as a continuous signal in order to control e.g. sources or as
a discrete gate signal in order to feed control the gate of a switch or semicon-
ductor. Continuous signal inputs have direct feedthrough which can lead to
algebraic loops if there is a direct path from a circuit output to a (continuous)
circuit input. In contrast, gate signal inputs do not have direct feedthrough.
However, they are expected to change only at discrete instants. Using a gate
signal input to feed a continuous signal into a Circuit block can lead to un-
expected results. The standard setting auto causes PLECS to determine the
signal type based on the internal connectivity.

Input Blocks in a Subsystem

If placed in a subschematic the inputs are not identified by numbers since ter-
minals on subsystem blocks can be freely positioned. Which terminal corre-
sponds to which input block can only be seen from the block name. In order to
move a terminal with the mouse around the edges of a subsystem block hold
down the Shift key while dragging the terminal with the left mouse button or
use the middle mouse button.

580

Signal Inport

Parameters Width
The width of the input signal. The default auto means that the width is
inherited from connected blocks.

Signal type
The input signal type (see the description above). This parameter appears
only in PLECS Blockset if the block is placed in a top-level schematic.

Port number
The terminal number of the input block. This parameter appears only in
PLECS Blockset if the block is placed in a top-level schematic.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261). This parameter appears only if the block is placed in
a top-level schematic or in an atomic subsystem (see “Virtual and Atomic
Subsystems” on page 603).

581

14 Component Reference

Signal Multiplexer

Purpose Combine several signals into vectorized signal

Library System

Description This multiplexer combines several signals into a vectorized signal. The input
signals may be scalars or vectors. In the block icon, the first input is marked
with a dot.

Parameter Number of inputs
This parameter allows you to specify the number and width of the input
signals. You can choose between the following formats for this parameter:

Scalar: A scalar specifies the number of scalar inputs to the block. If this
format is used the block accepts only signals with a width of 1.

Vector: The length of the vector determines the number of inputs. Each
element specifies the width of the corresponding input signal.

582

Signal Outport

Signal Outport

Purpose Add signal output connector to subsystem

Library System

Description

1

Outports are used to feed signals from subschematic to the parent schematic.
In PLECS Blockset, outports are also used to feed signals from a PLECS cir-
cuit back to Simulink. If you copy an output block into a schematic an output
terminal will be created on the corresponding subsystem block. The name of
the output block will appear as the terminal label. If you choose to hide the
block name by unselecting the show button in the dialog box the terminal
name will also disappear.

Output Blocks in a Top-Level Circuit

If an output block is placed in a top-level circuit a unique output port number
is assigned to the block. In PLECS Blockset, this port number determines the
position of the corresponding output terminal of the PLECS Circuit block in
the Simulink model.

Output Blocks in a Subsystem

If placed in a subschematic the outputs are not identified by numbers since
terminals on subsystem blocks can be freely positioned. Which terminal cor-
responds to which output block can only be seen from the block name. In or-
der to move a terminal with the mouse around the edges of a subsystem hold
down the Shift key while dragging the terminal with the left mouse button or
use the middle mouse button.

Parameters Width
The width of the output signal. The default auto means that the width is
inherited from connected blocks.

Port number
The terminal number of the output block. This parameter appears only if
the block is placed in a top-level circuit.

583

14 Component Reference

Signal Selector

Purpose Select or reorder elements from vectorized signal

Library System

Description The Signal Selector block generates an output vector signal that consists of
the specified elements of the input vector signal.

Parameters Input width
The width of the input signal vector.

Output indices
A vector with the indices of the input elements that the output vector
should contain.

584

Signal Switch

Signal Switch

Purpose Select one of two input signals depending on control signal

Library Control / Discontinuous

Description While the Signal Switch is in the off-state the output is connected to the in-
put terminal indicated in the icon. When the switch criteria is met, the switch
changes to the on-state and the output is connected to the opposite input ter-
minal.

Parameters Criteria
The switch criteria which has to be met to put the switch in the on-state.
Available choices are
• u >= Threshold,
• u > Threshold and
• u ∼= Threshold.

Threshold
The threshold value used for the switch criteria.

Probe Signals Inputs
The block input signals.

Output
The block output signal.

Switch position
The state of the switch. The output is 0 while the switch is in the off-state
and 1 while it is in the on-state.

585

14 Component Reference

Signum

Purpose Provide sign of input signal

Library Control / Math

Description The Signum block outputs 1 for positive, -1 for negative and 0 for 0 input val-
ues.

Probe Signals Input
The block input signal.

Output
The block output signal.

586

Sine Wave

Sine Wave

Purpose Generate time-based sine wave with optional bias

Library Control / Sources

Description The Sine Wave block generates a sinusoidal output signal with an optional
bias according to the equation

y = A · sin(ω · t+ ϕ) + C ω = 2πf

If a variable-step solver is used, the solver step size is automatically limited to
ensure that a smooth waveform is produced.

Parameters Amplitude
The amplitude A of the sine wave signal.

Bias
The offset C that is added to the sine wave signal.

Frequency
The frequency of the sine wave in hertz (f) or rad/second (ω), see below.

Phase
The phase ϕ of the sine wave in rad, per unit (p.u.) or degrees, see below.
The parameter value should be in the range [0 2π], [0 1] or [0 360] re-
spectively.

Units for frequency and phase
The frequency and phase can be expressed in terms of (rad/sec, rad),
(Hz, p.u.) or (Hz, degrees). If the phase is expressed in per unit (p.u.),
a value of 1 is equivalent to the period length.

Probe Signal Output
The block output signal.

587

14 Component Reference

Small Signal Gain

This block is included only in the PLECS Standalone library.

Purpose Measure loop gain of closed control loop using small-signal analysis

Library Control / Small Signal Analysis

Description This block uses the Small Signal Perturbation block see page 589 and the
Small Signal Response block see page 590 to inject a perturbation into a
feedback loop and measure the system response. To see the implementation
choose Look under mask from the Subsystem submenu of the block’s con-
text menu.

For detailed information regarding small-signal analysis see chapter “Analysis
Tools” (on page 161).

Parameter Compensate for negative feedback
When set to on, the underlying Small Signal Response block inverts the
reference input in order to compensate for a negative unity gain that is
introduced when the feedback signal is subtracted from a reference signal.

When set to off, the reference input is taken as is.

588

Small Signal Perturbation

Small Signal Perturbation

This block is included only in the PLECS Standalone library.

Purpose Generate perturbation signal for small-signal analysis

Library Control / Small Signal Analysis

Description During a small-signal analysis that references this block, it generates the ap-
propriate perturbation signal: a sinusoidal signal for an AC Sweep and a dis-
crete pulse for an Impulse Response Analysis. At all other times the perturba-
tion is zero.

For detailed information regarding small-signal analysis see chapter “Analysis
Tools” (on page 161).

Parameter Show feed-through input
When set to on, the block displays an input port. The output signal is the
sum of the input signal and the perturbation. The default is off.

589

14 Component Reference

Small Signal Response

This block is included only in the PLECS Standalone library.

Purpose Measure system response for small-signal analysis

Library Control / Small Signal Analysis

Description During a small-signal analysis that references this block, it records the sig-
nal(s) that are connected to the block input(s) in order to calculate the trans-
fer function

G(s) =
Y (s)

U(s)

If the reference input is shown, U(s) is calculated from the signal that is con-
nected to it. Otherwise, U(s) is calculated from the perturbation signal gener-
ated by the corresponding Small Signal Perturbation block see page 589.

For detailed information regarding small-signal analysis see chapter “Analysis
Tools” (on page 161).

Parameters Show reference input
Specifies whether or not the block shows the reference input port.

Invert reference input
Specifies whether or not the reference input signal is inverted, i.e. multi-
plied with -1.

590

Space Vector PWM

Space Vector PWM

Purpose Generate PWM signals for 3-phase inverter using space-vector modulation
technique

Library Control / Modulators

Description The space vector modulator generates a reference voltage vector, −→Vs, at the ac
terminals of a three phase voltage source converter shown below. The refer-
ence vector is defined in the αβ coordinate system: −→Vs = V ∗α + j V ∗β .

Vdc

leg A leg B leg C

Vs
a
b
c

Operation The construction of the reference voltage vector, −→Vs, is graphically depicted be-
low. Internally, the space vector modulator consists of a sector detection and
vector timing calculation function that is executed at the beginning of the
switching cycle. In this function, the operating sector and relative on-times
of the switching vectors are calculated. During a switching cycle, a vector gen-
eration and sequencing function is called at the switching instants to update
the switch output.

The sector detection calculation determines the sector in which the reference
voltage vector −→Vs resides. The relative on-times, τa, τb, τ0, for the switching vec-
tors −→Va,

−→
Vb and −→V0 are then calculated. In each sector, two unique switching

vectors named −→Va and −→Vb are available. Two zero vectors, named
−→
V 1

0 ,
−→
V 2

0 are
also available. The relationship between the relative on-times and the refer-
ence vector is shown below for an arbitrary sector. The relative on-times are
calculated by projecting the reference vector onto the vectors −→Va and −→Vb.

The vector generation and sequencing function creates a switching cy-
cle by time-averaging the switching vectors according to their on-time

591

14 Component Reference

vs

Sector 2

Sector 1Sector 3

Sector 4 Sector 6

Sector 5

v *
v *

Construction of the reference vector −→Vs.

values. There are many possible switching sequences that can be imple-
mented since the order in which the vectors −→Va,

−→
Vb,
−→
V0 are applied dur-

ing a switching cycle is arbitrary. In addition, one or both of the −→V0 vec-
tors can be used. For further information, please read the documenta-
tion that accompanies the demo model "Space Vector Control of a Three
Phase Rectifier using PLECS". This documentation can be found at
www.plexim.com/sites/default/files/plecs_svm.pdf.

592

http://www.plexim.com/support/application-examples/189
http://www.plexim.com/support/application-examples/189
http://www.plexim.com/sites/default/files/plecs_svm.pdf

Space Vector PWM

Vb

Va

vs
V0
V0 Va

Vb

V0,1 2

0

b

a

Relationship between relative on times, τa, τb, τ0, switching vectors, −→Va,
−→
Vb,
−→
V0,

and reference vector, −→Vs.

Parameters Modulation strategy
The modulation strategy can be set to ‘Alternating zero vector’ or ‘Symmet-
rical’ using a combo box. With alternating zero vector modulation, only one
of the two −→V0 switching vectors is used during a switching sequence. One
switch leg is always clamped to the positive or negative dc bus voltage and
only two of the three inverter legs are switched.

With symmetrical modulation, the two −→V0 switching vectors are used: one
at the beginning and one at the middle of a switching sequence. All three
inverter legs are switched during a switching sequence.

Switching frequency
The switching frequency in Hz.

Switch output values
The switch output values in the high and low state. The values should
be selected to match the inverter’s gate control logic so that a high value
turns on the upper switch in the leg and the low value turns on the lower
switch. The default values are [−1 1].

Inputs and
Outputs

DC voltage
The input signal Vdc is the voltage measured on the dc side of the inverter.

Reference voltage
This input, labeled V ∗αβ , is a two-dimensional vector signal comprising the
elements [V ∗α , V

∗
β].

593

14 Component Reference

Switch output
The output labeled sw is formed from three switch control signals,
[Sa, Sb, Sc], which control the inverter legs A, B, and C. Each switch signal
controls the upper and lower switches in the respective leg.

Probe Signals sector
A value in the set of [1..6] that indicates the sector in which the referer-
ence vector, −→Vs, is located.

tau
A vector signal comprising the three relative on-time values, [τa, τb, τ0].

sw
A vector signal consisting of the three gate signals for the inverter legs,
[Sa, Sb, Sc].

594

Space Vector PWM (3-Level)

Space Vector PWM (3-Level)

Purpose Generate PWM signals for a 3-phase 3-level neutral-point clamped inverter
using space-vector modulation technique

Library Control / Modulators

Description The 3-level space-vector modulator generates a voltage vector on the ac ter-
minals of a neutral-point clamped 3-phase inverter according to a reference
signal provided in the stationary αβ reference frame.

By controlling the semiconductor gate signals, each ac terminal can be con-
nected either to the high (+), low (-) or neutral (o) point of the dc link. This
results in 27 vectors including 12 short vectors, 6 medium vectors and 6 long
vectors, as well as 3 zero vectors. Under the assumption of balanced voltages
on the capacitors Vdc+ and Vdc− the space-vector diagram is graphically de-
picted below.

595

14 Component Reference

-+- o+-

+o-

+--

+-o

+-+ o-+ --+

-o+

-++

-+o

++-

++o
oo-

+oo
o--

+o+
o-o --o

oo+

-oo
o++

o+o
-o-

Sector

3

Sector

2

Sector

1

Sector

4
Sector

6

Zone
2

Zone
3

Zone
1

Zone
4

The hexagon area can be divided in to six sectors (1 to 6), each of which has
four zones (1 to 4). As an example, consider the reference voltage ~V ∗ to be lo-
cated in zone 2 of sector 1. In order to generate the reference voltage ~V ∗ on
the ac terminals, the adjacent vectors ~V1, ~V3 and ~V5 are selected and weighted
by time. The on-time of each vector with respect to the switching period is cal-
culated as:

τa = 1− 2k sin (θ)

τb = 2k sin
(π

3
+ θ
)
− 1

τc = 1− 2k sin
(π

3
− θ
)

This block implements a symmetrical sequence to achieve minimum total har-
monic distortion (THD). The short vectors have redundant switch states, e.g.
~V1 can be either generated by the combination (+oo) or (o--). In order to keep
the dc link voltages balanced, both switch states must be applied for the same

596

Space Vector PWM (3-Level)

V0

V1

V2

V5

V4

V3

V *

Sector

1

τ a

τ bτ c

θ

duration during one switching period. The resulting switch pattern is illus-
trated below:

τ c
4

τ a
4

τ b
2

τ c
4

τ a
2

τ c
4

τ b
2

τ a
4

τ c
4

Sa

Sb

Sc

Parameters Switching frequency
The switching frequency in Hz.

Output values
The switch output values in the high, neutral and low state. The default
values are [-1 0 1].

Inputs and
Outputs

DC voltage
The input signal Vdc is the sum of the two dc link voltages Vdc+ and Vdc−.

597

14 Component Reference

Reference voltage
This input, labeled V ∗αβ , is a two-dimensional vector signal comprising the
elements [V ∗α , V

∗
β].

Switch output
The output labeled sw is formed from the three switch signals [Sa, Sb, Sc],
which control the converter legs A, B and C. Each switch signal deter-
mines if the corresponding ac terminal shall be connected to the positive,
neutral or negative side of the dc link.

Probe Signals sector
A value in the set of [1..6] that indicates the sector in which the reference
vector, ~V ∗, is located.

zone
A value in the set of [1..4] that indicates the zone in which the reference
vector, ~V ∗, is located.

tau
A vector signal comprising the three relative on-time values, [τa, τb, τc].

sw
A vector signal consisting of the three gate signals for the inverter legs,
[Sa, Sb, Sc].

598

SR Flip-flop

SR Flip-flop

Purpose Implement set-reset flip-flop

Library Control / Logical

Description The SR Flip-flop behaves like a pair of cross-coupled NOR logic gates. The
output values correspond to the following truth table:

S R Q /Q

0 0 No change No change

0 1 0 1

1 0 1 0

1 1 Restricted (0) Restricted (0)

The combination S = R = 1 is restricted because both outputs will be set to 0,
violating the condition Q = not(/Q). If both inputs change from 1 to 0 in the
same simulation step, Q will be set to 0 and /Q to 1.

Parameter Initial state
The state of the flip-flop at simulation start.

Probe Signals S
The input signal S.

R
The input signal R.

Q
The output signals Q.

/Q
The output signals /Q.

599

14 Component Reference

State Machine

Purpose Model a state machine

Library Control / State Machine

Description The State Machine block lets you graphically create and edit state machines
and simulate them together with a surrounding system. For a detailed de-
scription of State Machines see chapter “State Machines” (on page 215).

600

State Space

State Space

Purpose Implement linear time-invariant system as state-space model

Library Control / Continuous

Description The State Space block models a state space system of the form
ẋ = Ax + Bu, y = Cx + Du, where x is the state vector, u is the input vector,
and y is the output vector.

Parameters A,B,C,D
The coefficient matrices for the state space system. The dimensions for the
coefficient matrices must conform to the dimensions shown in the diagram
below:

where n is the number of states, m is the width of the input signal and p
is the width of the output signal.

Initial condition
A vector of initial values for the state vector, x.

Probe Signals Input
The input vector, u.

Output
The output vector, y.

601

14 Component Reference

Step

Purpose Output a signal step.

Library Control / Sources

Description The Step block generates an output signal that changes its value at a given
point in time.

Parameters Step time
The time at which the output signal changes its value.

Initial output
The value of the output signal before the step time is reached.

Final output
The value of the output signal after the step time is reached.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signal Output
The block output signal.

602

Subsystem

Subsystem

Purpose Create functional entity in hierarchical simulation model

Library System

Description A subsystem block represents a system within another system. In order to
create a subsystem, copy the subsystem block from the library into your
schematic. You can then open the subsystem block and copy components into
the subsystem’s window.

The input, output, and physical terminals on the block icon correspond to the
input, output, and physical port blocks in the subsystem’s schematic. If the
block names are not hidden, they appear as terminal labels on the subsystem
block.

You can move terminals with the mouse around the edges of the subsystem by
holding down the Shift key while dragging them with the left mouse button
or by using the middle mouse button.

Virtual and Atomic Subsystems

By default, PLECS treats subsystems as virtual, which means that they only
represent a graphical grouping of the components that they comprise. At sim-
ulation start, virtual subsystems are flattened and the components they com-
prise are ordered individually when PLECS determines their proper execution
order (see “Block Sorting” on page 29).

In an atomic subsystem, on the other hand, the components are not only
grouped graphically but they are also executed as a group. This is necessary
if the execution depends on a condition such as a common sample time or an
enable and/or a trigger signal (see the Enable block on page 392 and the Trig-
ger block on page 692).

Whether a subsystem is virtual or atomic is controlled by the subsystem exe-
cution settings.

Note A subsystem that has physical terminals cannot be made atomic.

603

14 Component Reference

Execution
Settings

To open the dialog for editing the subsystem settings, select the block, then
choose Execution settings... from the Subsystem submenu of the Edit
menu or the block’s context menu.

Treat as atomic unit
If this parameter is checked, PLECS treats the subsystem as atomic, oth-
erwise as virtual (see “Virtual and Atomic Subsystems” above).

Minimize occurrence of algebraic loops
This parameter only applies to atomic subsystems. If it is unchecked,
PLECS assumes that all inputs of the subsystem have direct feedthrough,
i.e. the output functions of the blocks feeding these inputs must be exe-
cuted before the output function of the subsystem itself can be executed
(see “Block Sorting” on page 29). If the atomic subsystem is part of a feed-
back loop this can result in algebraic loop errors where a virtual subsys-
tem could be used without problems.

If the parameter is checked, PLECS determines the actual feedthrough be-
havior of the individual inputs from the internal connectivity. A subsystem
input that is internally only connected to non-direct feedthrough inputs of
other blocks (e.g. the inputs of Integrator, Memory or Delay blocks) does
not have direct feedthrough. This can help reduce the occurrence of alge-
braic loops.

Sample time
This parameter is enabled only if the subsystem is atomic and specifies the
sample time with which the subsystem and the components that it com-
prises are executed. A setting of auto (which is the default) causes the
subsystem to choose its sample time based on the components that it com-
prises.

The following group of settings is shown only if you have a license for the
PLECS Coder.

Enable code generation
Checking this option causes the subsystem to be added to the list of sys-
tems in the Coder Options dialog (see “Generating Code” on page 264).
Checking this option also implicitly makes the subsystem atomic and dis-
ables the minimization of algebraic loops.

Discretization step size
This parameter is enabled only if code generation is enabled. It specifies
the base sample time for the generated code and is used to discretize the
physical model equations (see “Physical Model Discretization” on page 33)
and continuous state variables of control blocks.

604

Subsystem

Simulation mode
This parameter is enabled only if code generation is enabled. When this
parameter is set to Normal, which is the default, the subsystem is simu-
lated like a normal atomic subsystem. When the parameter is set to Code-
Gen, the generated code is compiled and linked to PLECS to be executed
instead of the subsystem during a simulation.

In connection with the “Traces” feature of the scopes (see “Adding Traces”
on page 96), this allows you to easily verify the fidelity of the generated
code against a normal simulation.

Parameters You can create a dialog box for your Subsystem by masking the block (see
“Mask Parameters” on page 66 for more details).

605

14 Component Reference

Sum

Purpose Add and subtract input signals

Library Control / Math

Description The Sum block adds or subtracts input signals. In case of a single input, all
elements of the input vector are summed or subtracted. Vectorized input sig-
nals of the same width are added or subtracted element wise and result in a
vectorized output signal. If vectorized and scalar input signals are mixed, the
scalar input signals are expanded to the width of the vectorized input signals.

Parameters Icon shape
Specifies whether the block is drawn with a round or a rectangular shape.
Round shape icons permit a maximum of three inputs.

List of signs or number of inputs
The inputs can be specified either with
• a string containing + or - for each input and | for spacers, or
• a positive integer declaring the number of summands.

Output data type
For code generation only. The data type of the output signal. See “Data
Types” (on page 261).

Probe Signals Input i
The ith input signal.

Output
The block output signal.

606

Switch

Switch

Purpose On-off switch

Library Electrical / Switches

Description This Switch provides an ideal short or open circuit between its two electrical
terminals. The switch is open when the input signal is zero, otherwise closed.

Parameter Initial conductivity
Initial conduction state of the switch. The switch is initially open if the pa-
rameter evaluates to zero, otherwise closed. This parameter may either be
a scalar or a vector corresponding to the implicit width of the component.
The default value is 0.

Probe Signal Switch conductivity
Conduction state of the switch. The signal outputs 0 if the switch is open,
and 1 if it is closed.

607

14 Component Reference

Switched Reluctance Machine

Purpose Detailed model of switched reluctance machine with open windings

Library Electrical / Machines

Description These components represent analytical models of three common switched re-
luctance machine types: three-phase 6/4 SRM, four-phase 8/6 SRM and five-
phase 10/8 SRM.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor mode,
otherwise in generator mode. In the component icon, the positive terminals of
the stator windings are marked with a dot.

Note The Switched Reluctance Machine models can only be simulated with
the Continuous State-Space Method.

The machine flux linkage is modeled as a non-linear function of the stator cur-
rent and rotor angle Ψ(i, θ) accounting for both the magnetization characteris-
tic of the iron and the variable air gap.

∂Ψ/∂i = L
a

∂Ψ/∂i = L
sat

∂Ψ/∂i = L
u

i

Ψ

Ψ
sat

608

Switched Reluctance Machine

In the unaligned rotor position the flux linkage is approximated as a linear
function:

Ψu(i) = Lu · i

In the aligned rotor position the flux linkage is a non-linear function of the
stator current:

Ψa(i) = Ψsat ·
(
1− e−K·i

)
+ Lsat · i

where

K =
La − Lsat

Ψsat

For intermediate rotor positions the flux linkage is written as a weighted sum
of these two extremes

Ψ(i, θ) = Ψu(i) + f(θ) · (Ψa(i)−Ψu(i))

using the weighting function

f(θ) =
1

2
+

1

2
cos

(
Nr

[
θ + 2π · x

Ns

])
where Nr is the number of rotor poles, Ns is the number of stator poles, and
x = 0 . . . (Ns/2− 1) is the index of the stator phase.

Electrical System

∂Ψ/∂iR ∂Ψ/∂θ ∙ ω

+

−

v

i

The terminal voltage of a stator phase is determined by the equation

v = R · i+
dΨ

dt
= R · i+

∂Ψ

∂i
· di
dt

+
∂Ψ

∂θ
· dθ
dt

The electromagnetic torque produced by one phase is the derivative of the co-
energy with respect to the rotor angle:

T (i, θ) =
∂

∂θ

ˆ i

0

Ψ(i′, θ)di′

609

14 Component Reference

The total torque Te of the machine is given by the sum of the individual phase
torques.

Mechanical System

Rotor speed:

d

dt
ω =

1

J
(Te − Fω − Tm)

Rotor angle:

d

dt
θ = ω

Parameters Stator resistance
Stator resistance R in ohms (Ω).

Unaligned stator inductance
Stator inductance Lu in the unaligned rotor position, in henries (H).

Initial aligned stator inductance
Initial stator inductance La in the aligned rotor position, in henries (H).

Saturated aligned stator inductance
Saturated stator inductance Lsat in the aligned rotor position, in henries
(H).

Aligned saturation flux linkage
Flux linkage Ψsat at which the stator saturates in the aligned position, in
Vs.

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second (s−1).

Initial rotor angle
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A three-element vector containing the initial stator currents ia,0, ib,0 and
ic,0 of phases a, b and c in amperes (A).

610

Switched Reluctance Machine

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in A. Currents flow-
ing into the machine are considered positive.

Back EMF
The back EMF voltages ea, eb, ec in volts (V).

Stator flux linkage
The flux linkages in the individual phases of the machine in Vs.

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in Nm.

References
D.A. Torrey, J.A. Lang, “Modelling a nonlinear variable-reluctance motor

drive”, IEE Proceedings, Vol. 137, Pt. B, No. 5, Sept. 1990.

D.A. Torrey, X.-M. Niu, E.J. Unkauf, “Analytical modelling of variable-
reluctance machine magnetisation characteristic”, IEE Proceedings Elec-
tric Power Applications, Vol. 142, No. 1, Jan. 1995.

611

14 Component Reference

Symmetrical PWM

Purpose Generate PWM signal using symmetrical triangular carrier

Library Control / Modulators

Description 2-level PWM generator with a symmetrical triangular carrier. The input m is
the modulation index, and the output s is the switching function. If the mod-
ulation index is a vector the switching function is also a vector of the same
width.

The block can be used to control the IGBT Converter (see page 426) or the
ideal Converter (see page 411). In these cases the modulation index must have
a width of 3 according to the number of inverter legs.

The block offers different sampling methods for the modulation index. The fig-
ure below illustrates Natural Sampling.

−1

0

1

Sw
itc

hi
ng

 f
un

ct
io

n

−1

0

1

Natural Sampling

M
od

ul
at

io
n

in
de

x

1/f

The following figures illustrate the different Regular Sampling methods. In
the figure on the left, double edge sampling is used, i.e. the modulation in-
dex is updated at both tips of the triangular carrier. In the right figure, single

612

Symmetrical PWM

edge sampling is employed. Here, the modulation index is updated only at the
upper tips of the carrier.

−1

0

1

Sw
itc

hi
ng

 f
un

ct
io

n

−1

0

1

Double edge sampling

M
od

ul
at

io
n

in
de

x

1/f

Single edge sampling

1/f

Parameters Sampling
Select a sampling method. If you select Natural Sampling the carrier
signal may begin with 0 or 1 at simulation start. The Regular Sampling
method lets you choose between double edge or single edge sampling.

Carrier frequency
The frequency f of the triangular carrier signal, in Hz.

Carrier offset
The time offset of the carrier signal, in p.u. of the carrier period.

Input limits
The range of the modulation index. The default is [-1 1].

Output values
Values of the switching function in off-state and on-state. The default is
[-1 1].

613

14 Component Reference

Symmetrical PWM (3-Level)

Purpose Generate 3-level PWM signal using symmetrical triangular carriers

Library Control / Modulators

Description 3-level PWM generator with two symmetrical triangular carriers. The input m
is the modulation index. The switching function s outputs either 1, 0 or -1. If
the modulation index is a vector the switching function is also a vector of the
same width.

The block can be used to control the 3-Level IGBT Converter (see page 416)
or the ideal 3-Level Converter (see page 410). In these cases the modulation
index must have a width of 3 according to the number of inverter legs.

The figures below illustrate the Natural Sampling method. In the left figure,
the negative carrier signal is obtained by flipping the positive carrier verti-
cally around the time axis. In the right figure, the positive carrier is verti-
cally shifted to construct the negative carrier. The latter technique reduces
the switching frequency and hence the semiconductor stress in three-phase
converters.

−1

0

1

Sw
itc

hi
ng

 f
un

ct
io

n

−1

0

1

M
od

ul
at

io
n

in
de

x

Negative carrier flipped

1/f

Negative carrier shifted

1/f

614

Symmetrical PWM (3-Level)

The figures below illustrate the different Regular Sampling methods offered
by this block. With double edge sampling (left figure) the modulation index
is updated at the carrier tips and zero-crossings. With single edge sampling
(right figure) the modulation index is updated only at the outer tips.

−1

0

1

Sw
itc

hi
ng

 f
un

ct
io

n

−1

0

1

Double edge sampling
M

od
ul

at
io

n
in

de
x

1/f

Single edge sampling

1/f

Parameters Sampling
Select a sampling method. If you select Natural Sampling the carrier
signal may begin with 0 or 1 at simulation start. The Regular Sampling
method lets you choose between double edge and single edge sampling.

Carrier frequency
The frequency f of the triangular carrier signals, in Hz.

Carrier offset
The time offset of the carrier signal, in p.u. of the carrier period.

Negative carrier
Select the phase shift between the negative and positive carrier signals.
The negative carrier may be constructed from the positive carrier either by
flipping or shifting.

Input limits
The range of the modulation index. The default is [-1 1].

615

14 Component Reference

Synchronous Machine (Round Rotor)

Purpose Smooth air-gap synchronous machine with main-flux saturation

Library Electrical / Machines

Description This synchronous machine has one damper winding on the direct axis and two
damper windings on the quadrature axis of the rotor. Main flux saturation is
modeled by means of a continuous function.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor
mode, otherwise in generator mode. All electrical variables and parameters
are viewed from the stator side. In the component icon, phase a of the stator
winding and the positive pole of the field winding are marked with a dot.

In order to inspect the implementation, please select the component in your
circuit and choose Look under mask from the Subsystem submenu of the
Edit menu. If you want to make changes, you must first choose Break li-
brary link and then Unprotect, both from the same menu.

Electrical System

Stator flux linkages:

Ψd = Lls id + Lm,d

(
id + i′f + i′k,d

)
Ψq = Lls iq + Lm,q

(
iq + i′g + i′k,q

)
The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage-behind-reactance formu-
lation.

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq rotor reference
frame. This results in constant coefficients in the stator and rotor equations
making the model numerically efficient. However, interfacing the dq model
with the external 3-phase network may be difficult. Since the coordinate
transformations are based on voltage-controlled current sources, inductors and
naturally commutated devices such as diode rectifiers may not be directly con-
nected to the stator terminals. In these cases, fictitious RC snubbers are re-
quired to create the necessary voltages across the terminals.

616

Synchronous Machine (Round Rotor)

Rs Lls

Lm,d

p∙ωm∙ Ψq

+

−

vd +

−

v'f

id

L'lf
R'f

i'f

L'lk,d
R'k,d i'k,d

d-axis

Rs Lls

Lm,q

p∙ωm∙ Ψq

+

−

vq

iq

L'lk,q2 R'k,q2

i'k,q2

L'lk,q1
R'k,q1 i'k,q1

q-axis

Voltage behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The rotor dy-
namics are expressed using explicit state-variable equations while the stator
branch equations are described in circuit form. However, due to the resulting
time-varying inductance matrices, this implementation is numerically less effi-
cient than the traditional rotor reference frame.

In both implementations, the value of the main flux inductance Lm is not con-
stant but depends on the main flux linkage Ψm as illustrated in the Ψm/im di-
agram. For flux linkages Ψm far below the transition flux ΨT, the relationship
between flux and current is almost linear and determined by the unsaturated
magnetizing inductance Lm,0. For large flux linkages the relationship is gov-
erned by the saturated magnetizing inductance Lm,sat. ΨT defines the knee
of the transition between unsaturated and saturated main flux inductance.
The tightness of the transition is defined with the form factor fT. If you do not
have detailed information about the saturation characteristic of your machine,
fT = 1 is a good starting value. The function

plsaturation(Lm0,Lmsat,PsiT,fT)

617

14 Component Reference

plots the main flux vs. current curve and the magnetizing inductance vs. cur-
rent curve for the parameters specified.

∂Ψ/∂i = L
m,0

∂Ψ/∂i = L
m,sat

f
T
 = 4

f
T
 = 2

f
T
 = 1

f
T
 = 0.5

i
m

Ψ
m

Ψ
T

The model accounts for steady-state cross-saturation, i.e. the steady-state
magnetizing inductances along the d-axis and q-axis are functions of the cur-
rents in both axes. For rotating reference frame formulation, the stator cur-
rents, the field current and the main flux linkage are chosen as state vari-
ables. With this choice of state variables, the representation of dynamic cross-
saturation could be neglected without affecting the performance of the ma-
chine. The computation of the time derivative of the main flux inductance was
not required.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (iq Ψd − id Ψq)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

618

Synchronous Machine (Round Rotor)

Parameters Most parameters for the Salient Pole Synchronous Machine (see page 621) are
also applicable to this round rotor machine. The following parameters are dif-
ferent:

Unsaturated magnetizing inductance
The unsaturated magnetizing inductance Lm,0. The value in henries (H) is
referred to the stator side.

Saturated magnetizing inductance
The saturated magnetizing inductance Lm,sat, in H. If no saturation is to
be modeled, set Lm,sat = Lm,0.

Damper resistance
A three-element vector containing the damper winding resistance R′k,d,
R′k,q1 and R′k,q2 of the d-axis and the q-axis. The values in ohms (Ω) are
referred to the stator side.

Damper leakage inductance
A three-element vector containing the damper winding leakage inductance
L′lk,d, L′lk,q1 and L′lk,q2 of the d-axis and the q-axis. The values in henries
(H) are referred to the stator side.

Initial field/damper current
A two-element vector containing the initial currents if,0 in the field wind-
ing and i′k,q1,0 in one of the damper windings in amperes (A). The current
in the damper winding is referred to the stator side.

Probe Signals Most probe signals for the Salient Pole Synchronous Machine (see page 621)
are also available with this machine. Only the following probe signal is differ-
ent:

Damper currents
The damper currents i′k,d, i′k,q1 and i′k,q2 in the stationary reference frame
in A, referred to the stator side.

References D. C. Aliprantis, O. Wasynczuk, C. D. Rodriguez Valdez, “A voltage-behind-
reactance synchronous machine model with saturation and arbitrary ro-
tor network representation”, IEEE Transactions on Energy Conversion,
Vol. 23, No. 2, June 2008.

K. A. Corzine, B. T. Kuhn, S. D. Sudhoff, H. J. Hegner, “An improved method
for incorporating magnetic saturation in the Q-D synchronous ma-
chine model”, IEEE Transactions on Energy Conversion, Vol. 13, No. 3,
Sept. 1998.

619

14 Component Reference

E. Levi, “Modelling of magnetic saturation in smooth air-gap synchronous
machines”, IEEE Transactions on Energy Conversion, Vol. 12, No. 2,
March 1997.

E. Levi, “Impact of cross-saturation on accuracy of saturated synchronous
machine models”, IEEE Transactions on Energy Conversion, Vol. 15,
No. 2, June 2000.

620

Synchronous Machine (Salient Pole)

Synchronous Machine (Salient Pole)

Purpose Salient pole synchronous machine with main-flux saturation

Library Electrical / Machines

Description This synchronous machine has one damper winding each on the direct and the
quadrature axis of the rotor. Main flux saturation is modeled by means of a
continuous function.

The machine operates as a motor or generator; if the mechanical torque has
the same sign as the rotational speed the machine is operating in motor
mode, otherwise in generator mode. All electrical variables and parameters
are viewed from the stator side. In the component icon, phase a of the stator
winding and the positive pole of the field winding are marked with a dot.

Electrical System

Rs Lls

Lm,d

p∙ωm∙ Ψq

+

−

vd +

−

v'f

id

L'lf
R'f

i'f

L'lk,d
R'k,d i'k,d

d-axis

Rs Lls

Lm,q

L'lk,q R'k,q
p∙ωm∙ Ψq

+

−

vq

iq i'k,q

q-axis

621

14 Component Reference

Stator flux linkages:

Ψd = Lls id + Lm,d

(
id + i′f + i′k,d

)
Ψq = Lls iq + Lm,q

(
iq + i′k,q

)
The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage-behind-reactance formu-
lation.

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq rotor reference
frame. This results in constant coefficients in the stator and rotor equations
making the model numerically efficient. However, interfacing the dq model
with the external 3-phase network may be difficult. Since the coordinate
transformations are based on voltage-controlled current sources, inductors and
naturally commutated devices such as diode rectifiers may not be directly con-
nected to the stator terminals. In these cases, fictitious RC snubbers are re-
quired to create the necessary voltages across the terminals.

Voltage behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The rotor dy-
namics are expressed using explicit state-variable equations while the stator
branch equations are described in circuit form. However, due to the resulting
time-varying inductance matrices, this implementation is numerically less effi-
cient than the traditional rotor reference frame.

In both implementations, the value of the main flux inductances Lm,d and
Lm,q are not constant but depend on the main flux linkage Ψm as illustrated
in the Ψm/im diagram. In this machine model, the anisotropic factor

∂Ψ/∂i = L
m,0

∂Ψ/∂i = L
m,sat

f
T
 = 4

f
T
 = 2

f
T
 = 1

f
T
 = 0.5

i
m

Ψ
m

Ψ
T

622

Synchronous Machine (Salient Pole)

m =
√
Lm,q,0/Lm,d,0 ≡

√
Lm,q/Lm,d = const.

is assumed to be constant at all saturation levels. The equivalent magnetizing
flux Ψm in an isotropic machine is defined as

Ψm =
√

Ψ2
m,d + Ψ2

m,q/m
2 .

For flux linkages Ψm far below the transition flux ΨT, the relationship be-
tween flux and current is almost linear and determined by the unsaturated
magnetizing inductance Lm,0. For large flux linkages the relationship is gov-
erned by the saturated magnetizing inductance Lm,sat. ΨT defines the knee
of the transition between unsaturated and saturated main flux inductance.
The tightness of the transition is defined with the form factor fT. If you do not
have detailed information about the saturation characteristic of your machine,
fT = 1 is a good starting value. The function

plsaturation(Lm0,Lmsat,PsiT,fT)

plots the main flux vs. current curve and the magnetizing inductance vs. cur-
rent curve for the parameters specified.

The model accounts for steady-state cross-saturation, i.e. the steady-state
magnetizing inductances along the d-axis and q-axis are functions of the cur-
rents in both axes. For rotating reference frame formulation, the stator cur-
rents, the field current and the main flux linkage are chosen as state vari-
ables. With this choice of state variables, the representation of dynamic cross-
saturation could be neglected without affecting the performance of the ma-
chine. The computation of the time derivative of the main flux inductance was
not required.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (iq Ψd − id Ψq)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

623

14 Component Reference

θ̇m = ωm

Parameters Model
Implementation in the rotor reference frame or as a voltage behind reac-
tance.

Stator resistance
Armature or stator winding resistance Rs in ohms (Ω).

Stator leakage inductance
Armature or stator leakage inductance Lls in henries (H).

Unsaturated magnetizing inductance
A two-element vector containing the unsaturated stator magnetizing in-
ductance Lm,d,0 and Lm,q,0 of the d-axis and the q-axis. The values in hen-
ries (H) are referred to the stator side.

Saturated magnetizing inductance
The saturated stator magnetizing inductance Lm,d,sat along the d-axis, in
H. If no saturation is to be modeled, set Lm,d,sat = Lm,d,0.

Magnetizing flux at saturation transition
Transition flux linkage ΨT, in Vs, defining the knee between unsaturated
and saturated main flux inductance.

Tightness of saturation transition
Form factor fT defining the tightness of the transition between unsatu-
rated and saturated main flux inductance. The default is 1.

Field resistance
d-axis field winding resistance R′f in ohms (Ω), referred to the stator side.

Field leakage inductance
d-axis field winding leakage inductance L′lf in henries (H), referred to the
stator side.

Damper resistance
A two-element vector containing the damper winding resistance R′k,d and
R′k,q of the d-axis and the q-axis. The values in ohms (Ω) are referred to
the stator side.

Damper leakage inductance
A two-element vector containing the damper winding leakage inductance
L′lk,d and L′lk,q of the d-axis and the q-axis. The values in henries (H) are
referred to the stator side.

Inertia
Combined rotor and load inertia J in Nms2.

624

Synchronous Machine (Salient Pole)

Friction coefficient
Viscous friction F in Nms.

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second (s−1).

Initial rotor position
Initial mechanical rotor angle θm,0 in radians. If θm,0 is an integer multiple
of 2π/p the d-axis is aligned with phase a of the stator windings at simula-
tion start.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Initial field current
Initial current if,0 in the field winding in amperes (A).

Initial stator flux
A two-element vector containing the initial stator flux Ψ′d,0 and Ψ′q,0 in the
rotor reference frame in Vs.

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in A. Currents flow-
ing into the machine are considered positive.

Field currents
The excitation current if in A.

Damper currents
The damper currents i′k,d and i′k,q in the stationary reference frame, in A.

Stator flux (dq)
The stator flux linkages Ψd and Ψq in the stationary reference frame in
Vs.

Magnetizing flux (dq)
The magnetizing flux linkages Ψm,d and Ψm,q in the stationary reference
frame in Vs.

Rotational speed
The rotational speed ωm of the rotor in radians per second (s−1).

Rotor position
The mechanical rotor angle θm in radians.

625

14 Component Reference

Electrical torque
The electrical torque Te of the machine in Nm.

References
D. C. Aliprantis, O. Wasynczuk, C. D. Rodriguez Valdez, “A voltage-behind-

reactance synchronous machine model with saturation and arbitrary ro-
tor network representation”, IEEE Transactions on Energy Conversion,
Vol. 23, No. 2, June 2008.

K. A. Corzine, B. T. Kuhn, S. D. Sudhoff, H. J. Hegner, “An improved method
for incorporating magnetic saturation in the Q-D synchronous ma-
chine model”, IEEE Transactions on Energy Conversion, Vol. 13, No. 3,
Sept. 1998.

E. Levi, “Saturation modelling in D-Q axis models of salient pole syn-
chronous machines”, IEEE Transactions on Energy Conversion, Vol. 14,
No. 1, March 1999.

E. Levi, “Impact of cross-saturation on accuracy of saturated synchronous
machine models”, IEEE Transactions on Energy Conversion, Vol. 15,
No. 2, June 2000.

626

Synchronous Reluctance Machine

Synchronous Reluctance Machine

Purpose Synchronous reluctance machine configurable with lookup tables

Library Electrical / Machines

Description This three-phase synchronous reluctance machine has a solid rotor without
permanent magnets. Saliency, saturation and cross-coupling are modeled by
means of corresponding inductance lookup tables.

Two sets of one-dimensional inductance tables must be provided, one for
each axis (d, q), where the first curve corresponds to the case with no cross-
saturation, and the second to the case with maximum cross-saturation.

0 5 10 15 20
Current [A]

0

0.05

0.1

0.15

0.2

0.25

In
du

ct
an

ce
 [H

]

Ld, iq = 0
Ld, iq = max
Lq, id = 0
Lq, id = max

From this information, complete flux linkage and incremental inductance ta-
bles are derived, using an interpolation method that ensures a conservative
magnetic circuit.

The machine can operate as either a motor or generator. If the mechanical
torque has the same sign as the rotational speed, the machine is operating in
motor mode; otherwise it is in generator mode. In the component icon, phase a
is marked with a dot.

627

14 Component Reference

Electrical System

The model utilizes the Non-Excited Synchronous Machine (see page 507) com-
ponent. Use this component directly to model permanent magnet-assisted
synchronous reluctance machines, or if more complete flux/inductance data
is available. The electrical system is realized by means of the Voltage Behind
Reactance (VBR) formulation and is therefore appropriate to simulate switch-
ing dead-time and failure modes.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (ϕd iq − ϕq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters
General

Stator resistance
Armature or stator resistance Rs in Ω.

Stator leakage inductance
Leakage inductance of stator windings in henries (H). Stator leakage must
be set to a non-zero value.

Number of pole pairs
Number of pole pairs p.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A). ic,0 is calculated assuming a neutral connec-
tion.

628

Synchronous Reluctance Machine

Magnetizing Inductance

Current lookup vector
d- and q-axis peak current vector serving as input to inductance lookup
vectors. Must be a one dimensional vector with 3 or more elements, and
monotonically increasing, i.e. [0 ... id,max] and [0 ... iq,max]. The values are in
amperes (A).

Ld (iq = 0) lookup vector
d-axis inductance when there is no cross saturation (iq = 0). Must be the
same size as the Current lookup vector. The values are in henries (H).

Ld (iq = max) lookup vector
d-axis inductance when there is maximum cross saturation (iq = iq,max).
If no cross-saturated data is available this can be left empty. Must be the
same size as the Current lookup vector. The values are in henries (H).

Lq (id = 0) lookup vector
q-axis inductance in when there is no cross saturation (id = 0). Must be
the same size as the Current lookup vector. The values are in henries (H).

Lq (id = max) lookup vector
q-axis inductance when there is maximum cross saturation (id = id,max).
If no cross-saturated data is available this can be left empty. Must be the
same size as the Current lookup vector. The values are in henries (H).

Generated table size
User-specified dimension to derive lookup tables for flux linkages and
incremental inductances to be used in the underlying Non-Excited Syn-
chronous Machine (see page 507) component.

If left empty, the specified data is used as-is.

Specifying a scalar value, n, will generate equally spaced, n-element d-
and q-axis current vectors. The corresponding 2D lookup tables for flux
linkage and incremental inductance are also generated. The dimensions of
the generated tables must be 3 or more.

The size of the generated tables affect the model initialization and simu-
lation speeds. A smaller size leads to faster model initialization and sim-
ulation speeds, but lower resolution in the generated tables. A larger size
increases the resolution but adversely affects the model initialization and
simulation speeds. Care must be taken when configuring this parameter.

629

14 Component Reference

Current out of range
Configure to ignore, warn, warn and pause simulation, or generate error
and stop simulation if the d- or q-axis currents are outside the specified
range.

Co-energy plausibility check
The change in co-energy (∆W) between zero and maximum cross satura-
tion is calculated for both the d-axis (∆Wd) and q-axis (∆Wq). Configure
to check if ∆Wd,q are within 5% or 10% of each other to validate the input
data. This check can be disabled.

Mechanical

Inertia
Combined rotor and load inertia J in Nms2.

Friction coefficient
Viscous friction F in Nms.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second (s−1).

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Probe Signals All probe signals for the Non-Excited Synchronous Machine (see page 507) are
also available with this machine.

References
A. Vagati, M. Pastorelli, F. Scapino, G. Franceschini, “Impact of cross satura-

tion in synchronous reluctance motors of the transverse-laminated type”,
IEEE Transactions on Industry Applications, Vol. 36, No. 4, Aug 2000.

A. Vagati, M. Pastorelli, G. Franceschini, “Effect of magnetic cross-coupling in
synchronous reluctance motors”, Article in PCIM conference proceedings,
June 1997.

630

Thermal Capacitor

Thermal Capacitor

Purpose Thermal capacitance of piece of material

Library Thermal

Description This component provides an ideal thermal capacitance between its two ther-
mal ports or between the thermal port and the thermal reference. See sec-
tion “Configuring PLECS” (on page 41) for information on how to change the
graphical representation of thermal capacitors.

Parameters Capacitance
The value of the capacitor, in J/K. All finite positive and negative values
are accepted, including 0. The default is 1.

Initial temperature
The initial temperature difference between the thermal ports or between
the thermal port and thermal reference at simulation start, in kelvin (K).
The default is 0. If left blank or if the value is nan, PLECS will initialize
the value based on a thermal “DC” analysis, see “Temperature Initializa-
tion” (on page 121).

Probe Signal Temperature
The temperature difference measured across the capacitance. A positive
value is measured when the temperature at the terminal marked with “+”
is greater than the temperature at the unmarked terminal.

631

14 Component Reference

Thermal Chain

Purpose Thermal impedance implemented as RC chain

Library Thermal

Description This component implements a thermal RC chain of variable length. Using the
elements of the vectors provided in the component parameters Thermal re-
sistances and Thermal capacitances a subsystem is built as shown below.
The thermal capacitor C1 is connected to the terminal marked with a dot.

R1

C1 Cn

RnR2

C2
...

Parameters Thermal resistances
A vector containing the values of the thermal resistors R1 . . . Rn, in K/W.

Thermal capacitances
A vector containing the values of the thermal capacitors C1 . . . Cn, in J/K.

Initial temperature
A scalar value specifying the initial temperature of all thermal capaci-
tors at simulation start, in kelvin (K). The default is 0. If left blank or if
the value is nan, PLECS will initialize the value based on a thermal “DC”
analysis, see “Temperature Initialization” (on page 121).

632

Thermal Ground

Thermal Ground

Purpose Connect to common reference temperature

Library Thermal

Description The Thermal Ground implements a connection to the thermal reference.

633

14 Component Reference

Thermal Model Settings

Purpose Configure settings for an individual thermal model.

Library Thermal

Description The Thermal Model Settings block lets you configure parameter settings that
influence the code generation for a particular thermal system, see also “Code
Generation for Physical Systems” (on page 257).

The block affects the thermal system that it is attached to by its terminal. At
most one Model Settings block may be attached to an individual state-space
system. All thermal models within an atomic subsystem are combined into a
single common state-space system.

Parameters Matrix coding style
This setting allows you to specify the format used for storing the state-
space matrices for a physical model. When set to sparse, only the non-
zero matrix entries and their row and column indices are stored. When
set to full, matrices are stored as full m × n arrays. When set to full
(inlined), the matrices are additionally embedded in helper functions,
which may enable the compiler to further optimize the matrix-vector-
multiplications at the cost of increased code size.

634

Thermal Port

Thermal Port

Purpose Add thermal connector to subsystem

Library Thermal

Description Thermal ports are used to establish thermal connections between a schematic
and the subschematic of a subsystem (see page 603). If you copy a Thermal
Port block into the schematic of a subsystem, a terminal will be created on the
subsystem block. The name of the port block will appear as the terminal label.
If you choose to hide the block name by unselecting the show button in the
dialog box, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key or by using the middle mouse button.

Thermal Ports in a Top-Level Schematic

In PLECS Blockset, if a Thermal Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding ther-
mal terminal, which may be connected with other thermal terminals of the
same or a different PLECS Circuit block. The Thermal Port is also assigned a
unique physical port number. Together with the parameter Location on cir-
cuit block the port number determines the position of the thermal terminal
of the PLECS Circuit block.

For compatibility reasons you can also place an Thermal Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Note Thermal Port blocks may not be used in schematics that contain Ambi-
ent Temperature blocks (see page 316).

Parameter Port number
If a Thermal Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

635

14 Component Reference

Location on circuit block
If a Thermal Port is placed in a top-level schematic in PLECS Blockset,
this parameter specifies the side of the PLECS Circuit block on which the
corresponding terminal appears. By convention, left refers to the side
on which also input terminals are shown and right refers to the side on
which also output terminals are shown.

636

Thermal Resistor

Thermal Resistor

Purpose Thermal resistance of piece of material

Library Thermal

Description This component provides an ideal one-dimensional thermal resistor between
its two thermal ports. See section “Configuring PLECS” (on page 41) for in-
formation on how to change the graphical representation of thermal resistors.

Parameter Thermal resistance
The resistance in K/W. All positive and negative values are accepted, in-
cluding 0 and inf (∞). The default is 1.

637

14 Component Reference

Thermometer

Purpose Output measured temperature as signal

Library Thermal

Description

K K

The Thermometer measures the temperature difference between its two ther-
mal ports or between the thermal port and thermal reference and provides it
as a signal at the output of the component. The output signal can be made
accessible in Simulink with a Output block (see page 583) or by dragging the
component into the dialog box of a Probe block.

Probe Signal Measured temperature
The measured temperature in kelvin (K).

638

Thyristor

Thyristor

Purpose Ideal thyristor (SCR) with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Thyristor can conduct current only in one direction—like the diode. In ad-
dition to the diode it can be controlled by an external gate signal. The thyris-
tor is modeled by an ideal switch that closes when the voltage between an-
ode and cathode is positive and a non-zero gate signal is applied. The switch
remains closed until the current becomes negative. A thyristor cannot be
switched off via the gate.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
thyristor is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the thyristor. The thyristor is initially blocking
if the parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Vf +Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals Thyristor voltage
The voltage measured between anode and cathode.

639

14 Component Reference

Thyristor current
The current through the thyristor flowing from anode to cathode.

Thyristor gate signal
The gate input signal of the thyristor.

Thyristor conductivity
Conduction state of the internal switch. The signal outputs 0 when the
thyristor is blocking, and 1 when it is conducting.

Thyristor junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

Thyristor conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Thyristor switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

640

Thyristor Rectifier/Inverter

Thyristor Rectifier/Inverter

Purpose 3-phase thyristor rectifier/inverter

Library Electrical / Converters

Description Implements a three-phase rectifier or inverter based on the Thyristor model
(see page 639). The gate input is a vector of six signals ordered according to
the natural sequence of commutation. This sequence corresponds to the num-
bering of the thyristors in the electrical circuits below. The rectifier is shown
on the left side, the inverter on the right:

Thy2

a

b

c

Thy1

Thy4 Thy6

Thy3 Thy5 Thy6Thy4

Thy1

a

b

c

Thy2

Thy5Thy3

Parameters For a description of the parameters see the documentation of the Thyristor (on
page 639).

Probe Signals The thyristor converters provide six probe signals, each a vector containing
the appropriate quantities of the six individual thyristors: voltage, current,
conduction loss and switching loss. The vector elements are ordered according
to the natural sequence of commutation.

641

14 Component Reference

Thyristor with Reverse Recovery

Purpose Dynamic thyristor (SCR) model with reverse recovery

Library Electrical / Power Semiconductors

Description This component is a behavioral model of a thyristor which reproduces the ef-
fect of reverse recovery. The effect can be observed when a forward biased
thyristor is rapidly turned off. It takes some time until the excess charge
stored in the thyristor during conduction is removed. During this time the
thyristor represents a short circuit instead of an open circuit, and a negative
current can flow through the thyristor. The thyristor finally turns off when the
charge is swept out by the reverse current and lost by internal recombination.
The same effect is modeled in the Diode with Reverse Recovery (see page 363)
and described there in detail.

Note

• Due to the small time-constant introduced by the turn-off transient a stiff
solver is recommended for this device model.

• If multiple thyristors are connected in series the off-resistance may not be
infinite.

Parameters Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
thyristor is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple thyristors are connected
in series.

Continuous forward current
The continuous forward current If0 under test conditions.

Current slope at turn-off
The turn-off current slope dIr/dt under test conditions.

642

Thyristor with Reverse Recovery

Reverse recovery time
The turn-off time trr under test conditions.

Peak recovery current
The absolute peak value of the reverse current Irrm under test conditions.

Reverse recovery charge
The reverse recovery charge Qrr under test conditions. If both trr and Irrm
are specified, this parameter is ignored.

Lrr
This inductance acts as a probe measuring the di/dt. It should be set to a
very small value. The default is 10e-10.

Probe Signals Thyristor voltage
The voltage measured between anode and cathode.

Thyristor current
The current through the thyristor flowing from anode to cathode.

Thyristor conductivity
Conduction state of the internal switch. The signal outputs 0 when the
thyristor is blocking, and 1 when it is conducting.

References
A. Courtay, "MAST power diode and thyristor models including automatic

parameter extraction", SABER User Group Meeting Brighton, UK, Sept.
1995.

643

14 Component Reference

To File

Purpose Write time stamps and signal values to a file.

Library System

Description While a simulation is running, the To File block writes the time stamps and
the values of its input signals to a file. The file format can be either a text file
with comma separated values (csv) or a MATLAB data file (mat). CSV files
can be imported by all common spreadsheet tools like Microsoft Excel.

In a csv file a new row is appended for each time step. When writing to a
MATLAB file the resulting data contains a column for each time step.

The first value for each data record is the simulation time of the current simu-
lation step. The value is followed by the signal values of the input signal.

Parameters Filename
The name of the data file to write to. Files will be stored relative to the
model directory unless an absolute file path is given. The data file will be
created if it doesn’t exist. An existing file of the same name will be over-
written.

If you choose the option literal, the string that you enter is taken literally
as the basename of the data file. So, if you enter e.g. MyFile, the file name
will be MyFile.csv or MyFile.mat.

If you choose the option evaluate, the string that you enter is inter-
preted as a MATLAB/Octave expression that must yield a string, which
in turn is taken as the basename of the data file. So, if you enter e.g.
[’MyFile’ num2str(index)] and the current workspace contains a
variable index with a value of 2, the file name will be MyFile2.csv or
MyFile2.mat.

File type
The file format to use for the data file. The file can be written as a text file
with comma separated values (csv) or as a MATLAB data file (mat).

Sample time
For positive values the input data will be written to the data file once in
the given simulation interval. If the value is set to 0 the input data is
written to the data file in each simulation step. See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 36).

644

Torque (Constant)

Torque (Constant)

Purpose Generate constant torque

Library Mechanical / Rotational / Sources

Description The Constant Torque generates a constant torque between its two flanges. The
direction of a positive torque is indicated by the arrow.

Note A torque source may not be left unconnected or connected in series with
a spring or any other torque source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Torque
The magnitude of the torque, in Newton meters (Nm). The default value is
1.

Probe Signals Torque
The generated torque, in Newton meters (Nm).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in rad

s .

645

14 Component Reference

Torque (Controlled)

Purpose Generate variable torque

Library Mechanical / Rotational / Sources

Description The Controlled Torque generates a variable torque between its two flanges.
The direction of a positive torque is indicated by the arrow. The momentary
torque is determined by the signal fed into the input of the component.

Note A torque source may not be left unconnected or connected in series with
a spring or any other torque source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input
variable from the state-space equations and substitute it with the corre-
sponding output variables. The default is off.

Torque
The generated torque, in Newton meters (Nm).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in rad

s .

646

Torque Sensor

Torque Sensor

Purpose Output measured torque as signal

Library Mechanical / Rotational / Sensors

Description The Torque Sensor measures the torque between its two flanges and pro-
vides it as a signal at the output of the component. A torque flow from the
unmarked flange towards the flange marked with a dot is considered positive.

Note A torque sensor is ideally rigid. Hence, if multiple torque sensors are
connected in parallel the torque measured by an individual sensor is undefined.
This produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Probe Signal Torque
The measured torque, in Newton meters (Nm).

647

14 Component Reference

Torsion Spring

Purpose Ideal torsion spring

Library Mechanical / Rotational / Components

Description The Torsion Spring models an ideal linear spring in a rotational system de-
scribed with the following equations:

τ = −c ·∆θ
∆θ = θ − θ0

d

dt
θ = ω

where τ is the torque flow from the unmarked towards the marked flange, θ
is the angle of the marked flange with respect to the unmarked one, and θ0 is
the equilibrium flange displacement.

Note An torsion spring may not be connected in series with a torque source.
Doing so would create a dependency between an input variable (the source
torque) and a state variable (the spring torque) in the underlying state-space
equations.

Parameters Spring constant
The spring rate or stiffness c, in Nm

rad .

Equilibrium (unstretched) displacement
The displacement θ0 between the two flanges of the unloaded spring, in
radians.

Initial deformation
The initial deformation (torsion) ∆θ0 of the spring, in radians.

Probe Signals Torque
The spring torque τ , in Newton meters (Nm).

Deformation
The spring deformation ∆θ, in radians.

648

Transfer Function

Transfer Function

Purpose Model linear time-invariant system as transfer function

Library Control / Continuous

Description The Transfer Function models a linear time-invariant system that is ex-
pressed in the Laplace domain in terms of the argument s:

Y (s)

U(s)
=
nns

n + · · ·+ n1s+ n0

dnsn + · · ·+ d1s+ d0

The transfer function is displayed in the block if it is large enough, otherwise
a default text is shown. To resize the block, select it, then drag one of its se-
lection handles.

Parameters Numerator coefficients
A vector of the s term coefficients [nn . . . n1, n0] for the numerator, written
in descending order of powers of s. For example, the numerator s3 + 2s
would be entered as [1,0,2,0].
The output of the Transfer Function is vectorizable by entering a matrix
for the numerator.

Denominator coefficients
A vector of the s term coefficients [dn . . . d1, d0] for the denominator, written
in descending order of powers of s.

Note The order of the denominator (highest power of s) must be greater than
or equal to the order of the numerator.

Initial condition
The initial condition vector of the internal states of the Transfer Function
in the form [xn . . . x1, x0]. The initial conditions must be specified for the
controller normal form, depicted below for the the transfer function

Y (s)

U(s)
=
n2s

2 + n1s+ n0

d2s2 + d1s+ d0

649

14 Component Reference

a1

a0

a2

b0

b1

b21/s

++

++1/s+−

++

x1 x0 Y(s)U(s)

where

bi = di
dn

for i < n

bn = 1
dn

ai = ni − nndi
dn

for i < n

an = nn

For the normalized transfer function (with nn = 0 and dn = 1) this simpli-
fies to bi = di and ai = ni.

Probe Signals Input
The input signal.

Output
The output signal.

650

Transformation 3ph->RRF

Transformation 3ph->RRF

Purpose Transform 3-phase signal to rotating reference frame

Library Control / Transformations

Description This block transforms a three-phase signal [xa xb xc] into a two-dimensional
vector [yd yq] in a rotating reference frame. The first input is the three-phase
signal. The second input is the rotation angle ϕ of the rotating reference
frame. ϕ is given in radians.

 yd

yq

 =
2

3

cosϕ − sinϕ

cos (ϕ− 120◦) − sin (ϕ− 120◦)

cos (ϕ+ 120◦) − sin (ϕ+ 120◦)

T

·

xa

xb

xc

Any zero-sequence component in the three-phase signals is discarded.

651

14 Component Reference

Transformation 3ph->SRF

Purpose Transform 3-phase signal to stationary reference frame

Library Control / Transformations

Description This block transforms a three-phase signal [xa xb xc] into a two-dimensional
vector [yα yβ] in the stationary reference frame:

 yα
yβ

 =

2

3
−1

3
−1

3

0
1√
3
− 1√

3

 ·

xa

xb

xc

Any zero-sequence component in the three-phase signals is discarded.

652

Transformation RRF->3ph

Transformation RRF->3ph

Purpose Transform vector in rotating reference frame into 3-phase signal

Library Control / Transformations

Description This block transforms a two-dimensional vector [xd xq] in a rotating reference
frame into a three-phase signal [ya yb yc]. The first input of the block is the
vector [xd xq]. The second input is the rotation angle ϕ of the rotating refer-
ence frame. ϕ is given in radians.

ya

yb

yc

 =

cosϕ − sinϕ

cos (ϕ− 120◦) − sin (ϕ− 120◦)

cos (ϕ+ 120◦) − sin (ϕ+ 120◦)

 ·
xd

xq

The resulting three-phase signal does not have any zero-sequence component.

653

14 Component Reference

Transformation RRF->SRF

Purpose Transform vector from rotating to stationary reference frame

Library Control / Transformations

Description This block transforms a two-dimensional vector [xd xq] from a rotating refer-
ence frame into a vector [yα yβ] in the stationary reference frame. The first in-
put of the block is the vector [xd xq]. The second input is the angle ϕ between
the rotating and the stationary frame. ϕ is given in radians.

 yα
yβ

 =

 cosω1t − sinω1t

sinω1t cosω1t

 ·
xd

xq

654

Transformation SRF->3ph

Transformation SRF->3ph

Purpose Transform vector in stationary reference frame into 3-phase signal

Library Control / Transformations

Description This block transforms a two-dimensional vector [xα xβ] in the stationary refer-
ence frame into a three-phase signal [ya yb yc].

ya

yb

yc

 =

1 0

−1

2

√
3

2

−1

2
−
√

3

2

·

xα
xβ

The resulting three-phase signal does not have any zero-sequence component.

655

14 Component Reference

Transformation SRF->RRF

Purpose Transform vector from stationary to rotating reference frame

Library Control / Transformations

Description This block transforms a two-dimensional vector [xα xβ] in the stationary refer-
ence frame into a vector [yd yq] in a rotating reference frame. The first input
is the vector [xα xβ]. The second input is the angle ϕ between the rotating and
the stationary frame. ϕ is given in radians.

 yd

yq

 =

 cosω1t sinω1t

− sinω1t cosω1t

 ·
xα
xβ

656

Transformers (3ph, 2 Windings)

Transformers (3ph, 2 Windings)

Purpose 3-phase transformers in Yy, Yd, Yz, Dy, Dd and Dz connection

Library Electrical / Transformers

Description This group of components implements two-winding, three-phase transformers
with a three-leg or five-leg core. The transformer core is assumed symmetri-
cal, i.e. all phases have the same parameters. Depending on the chosen com-
ponent , the windings are wired in star (Y) or delta (D) connection on the pri-
mary side. On the secondary side, the windings are either in star (y), delta (d)
or zig-zag (z) connection. Star and zig-zag windings have an accessible neutral
point.

The phase angle difference between the primary and the secondary side can
be chosen. For Yy and Dd connections, the phase lag must be an integer mul-
tiple of 60 ◦. For Yd and Dy connections the phase lag must be an odd integer
multiple of 30 ◦. The phase lag of zig-zag windings can be chosen arbitrarily.
The windings of the secondary side are allocated to the transformer legs ac-
cording to the phase lag. Please note that the phase-to-phase voltage of delta
windings is by a factor of 1/

√
3 lower than the voltage of star or delta wind-

ings if the number of turns are equal.

 L
m,0

1

i
m

Ψ
m

i
m

(1) i
m

(2) i
m

(3)

Ψ
m

(1)

Ψ
m

(2)

Ψ
m

(3)

The core saturation characteristic of the transformer legs is piece-wise linear
and is modeled using the Saturable Inductor (see page 564). The magnetiz-
ing current im and flux Ψm value pairs are referred to the primary side. To
model a transformer without saturation enter 1 as the magnetizing current

657

14 Component Reference

values and the desired magnetizing inductance Lm as the flux values. A stiff
Simulink solver is recommended if the iron losses are not negligible, i.e. Rfe is
not infinite.

Parameters Leakage inductance
A two-element vector containing the leakage inductance of the primary
side L1 and the secondary side L2. The inductivity is given in henries (H).

Winding resistance
A two-element vector containing the resistance of the primary winding R1

and the secondary winding R2, in ohms (Ω).

No. of turns
A two-element vector containing the number of turns of the primary wind-
ing n1 and the secondary winding n2.

Magnetizing current values
A vector of positive current values in amperes (A) defining the piece-wise
linear saturation characteristic of the transformer legs. The current values
must be positive and strictly monotonic increasing. At least one value is
required.

Magnetizing flux values
A vector of positive flux values in Vs defining the piece-wise linear satura-
tion characteristic. The flux values must be positive and strictly monotonic
increasing. The number of flux values must match the number of current
values.

Core loss resistance
An equivalent resistance Rfe representing the iron losses in the trans-
former core. The value in ohms (Ω) is referred to the primary side.

No. of core legs
The number of legs of the transformer core. This value may either be 3 or
5.

Phase lag of secondary side
The phase angle between the primary side and the secondary side, in de-
grees. Unless the secondary side is in zig-zag connection, the angle can
only be varied in steps of 60 ◦.

Initial currents wdg. 1
A vector containing the initial currents on the primary side i1,a, i1,b and,
if the winding has a neutral point, i1,c. The currents are given in amperes
(A) and considered positive if flowing into the transformer. The default is
[0 0 0].

658

Transformers (3ph, 2 Windings)

Initial currents wdg. 2
A vector containing the initial currents on the secondary side i2,a, i2,b and,
if the winding has a neutral point, i2,c. The currents are given in amperes
(A) and considered positive if flowing into the transformer. The default is
[0 0 0].

659

14 Component Reference

Transformers (3ph, 3 Windings)

Purpose Three-phase transformers in Ydy and Ydz connection.

Library Electrical / Transformers

Description This group of components implements three-winding, three-phase transform-
ers with a three-leg or five-leg core. The transformer core is assumed symmet-
rical, i.e. all phases have the same parameters. The primary winding is in star
connection with an accessible neutral point and the secondary winding is in
delta connection. Depending on the chosen component, the tertiary winding is
wired either in star (y) or zig-zag (z) connection.

The phase angle difference between the primary and the secondary side must
be an odd integer multiple of 30 ◦. If the tertiary winding is in star connection
the phase lag against the primary side must be an integer multiple of 60 ◦. If
it is in zig-zag connection, the phase lag can be chosen arbitrarily. The wind-
ings of the secondary and tertiary side are allocated to the transformer legs
according to the phase lags. Please note that the phase-to-phase voltage of
delta windings is by a factor of 1/

√
3 lower than the voltage of star or delta

windings if the number of turns are equal.

 L
m,0

1

i
m

Ψ
m

i
m

(1) i
m

(2) i
m

(3)

Ψ
m

(1)

Ψ
m

(2)

Ψ
m

(3)

The core saturation characteristic of the transformer legs is piece-wise linear
and is modeled using the Saturable Inductor (see page 564). The magnetiz-
ing current im and flux Ψm value pairs are referred to the primary side. To
model a transformer without saturation enter 1 as the magnetizing current
values and the desired magnetizing inductance Lm as the flux values. A stiff

660

Transformers (3ph, 3 Windings)

Simulink solver is recommended if the iron losses are not negligible, i.e. Rfe is
not infinite.

Parameters Leakage inductance
A three-element vector containing the leakage inductance of the primary
side L1, the secondary side L2 and the tertiary side L3. The inductivity is
given in henries (H).

Winding resistance
A three-element vector containing the resistance of the primary winding
R1, the secondary winding R2 and the tertiary winding R3, in ohms (Ω).

No. of turns
A three-element vector containing the number of turns of the primary
winding n1, the secondary winding n2 and the tertiary winding n3.

Magnetizing current values
A vector of positive current values in amperes (A) defining the piece-wise
linear saturation characteristic of the transformer legs. The current values
must be positive and strictly monotonic increasing. At least one value is
required.

Magnetizing flux values
A vector of positive flux values in Vs defining the piece-wise linear satura-
tion characteristic. The flux values must be positive and strictly monotonic
increasing. The number of flux values must match the number of current
values.

Core loss resistance
An equivalent resistance Rfe representing the iron losses in the trans-
former core. The value in ohms (Ω) is referred to the primary side.

No. of core legs
The number of legs of the transformer core. This value may either be 3 or
5.

Phase lag of secondary side
The phase angle between the primary side and the secondary side, in de-
grees. Unless the secondary side is in zig-zag connection, the angle can
only be varied in steps of 60 ◦.

Initial currents wdg. 1
A vector containing the initial currents on the primary side i1,a, i1,b and
i1,c. The currents are given in amperes (A) and considered positive if flow-
ing into the transformer. The default is [0 0 0].

661

14 Component Reference

Initial currents wdg. 2
A vector containing the initial currents on the secondary side i2,a and i2,b.
The currents are given in amperes (A) and considered positive if flowing
into the transformer. The default is [0 0 0].

Initial currents wdg. 3
A vector containing the initial currents on the tertiary side i3,a, i3,b and
i3,c. The currents are given in amperes (A) and considered positive if flow-
ing into the transformer. The default is [0 0 0].

662

Translational Algebraic Component

Translational Algebraic Component

Purpose Define an algebraic constraint in terms of force and speed

Library Mechanical / Translational / Components

Description The Translational Algebraic Component enforces an arbitrary algebraic con-
straint involving force and speed.

The output signal “v” measures the speed of the marked flange with respect to
the unmarked one. The output signal “F” measures the force flow from the un-
marked towards the marked flange. The two output signals must affect the in-
put signal “0” by means of a direct feedthrough path. The component ensures
that the input signal is zero at all times.

The direct feedthrough path defines a function f(v, F), which in turn implic-
itly determines the speed-force characteristic of the component through the
constraint f(v, F) = 0. For instance, the choice f(v, F) := F + D · v causes
the Translational Algebraic Component to act as a Translational Damper (see
page 667) with damping constant D.

The Translational Algebraic Component offers no direct way to specify an ini-
tial displacement. In case you need to do so, place a Translational Damper
with zero damping constant in parallel to the component and set the initial
displacement property thereof.

By way of illustration, the following schematic shows a possible implementa-
tion of a translational damper with variable damping constant and prescribed
initial displacement:

663

14 Component Reference

Note The Translational Algebraic Component creates an algebraic loop. See
section “Block Sorting” (on page 29) for more information on algebraic loops.

Probe Signals Component force
The force flow from the unmarked towards the marked flange.

Component speed
The speed of the marked flange with respect to the unmarked one.

Component power
The power consumed by the component.

664

Translational Backlash

Translational Backlash

Purpose Ideal translational backlash

Library Mechanical / Translational / Components

Description The Translational Backlash models an ideal symmetrical, two-sided Hard Stop
(see page 670) in a translational system, which restricts the relative displace-
ment of the two flanges between an upper and lower limit of ± b

2 . While the
displacement is within the limits, no force is transmitted. When the displace-
ment hits either limit, the flanges become rigidly connected until the trans-
mitted force reverses.

Parameters Total backlash
The total permitted displacement b between the flanges, in meters.

Initial displacement
The initial displacement of the flanges, in meters. May be specified in or-
der to provide proper initial conditions if absolute positions are measured
anywhere in the system. Otherwise, this parameter can be left blank.

Probe Signals Force
The transmitted force flowing from the unmarked to the marked flange, in
Newton (N).

Displacement
The displacement of the marked flange with respect to the unmarked
flange, in meters (m).

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1
in upper limit.

665

14 Component Reference

Translational Clutch

Purpose Ideal translational clutch

Library Mechanical / Translational / Components

Description The Translational Clutch models an ideal clutch in a translational system.
When engaged, it makes an ideally rigid connection between the flanges; when
disengaged, it transmits zero force. The clutch engages when the input signal
becomes non-zero and disengages when the input signal becomes zero.

Parameters Initial state
The initial state (engaged/disengaged) of the clutch.

Initial displacement
The initial displacement of the flanges, in meters. May be specified in or-
der to provide proper initial conditions if absolute positions are measured
anywhere in the system. Otherwise, this parameter can be left blank.

666

Translational Damper

Translational Damper

Purpose Ideal viscous translational damper

Library Mechanical / Translational / Components

Description The Translational Damper models an ideal linear damper in a translational
system described with the following equations:

F = −D · v

where F is the force flow from the unmarked towards the marked flange and v
is the speed of the marked flange with respect to the unmarked one.

Parameters Damper constant
The damping (viscous friction) constant D, in Ns

m .

Initial displacement
The initial displacement of the flanges, in meters. May be specified in or-
der to provide proper initial conditions if absolute positions are measured
anywhere in the system. Otherwise, this parameter can be left blank.

667

14 Component Reference

Translational Friction

Purpose Ideal translational stick/slip friction

Library Mechanical / Translational / Components

Description The Translational Friction models any combination of static, Coulomb and vis-
cous friction between two flanges in a translational system. While the compo-
nent is stuck, it exerts whatever force is necessary in order to maintain zero
relative speed between the flanges, up to the limit of the breakaway force Fbrk.
When the breakaway force is exceeded, the flanges begin sliding against each
other, and the component exerts a force that consists of the Coulomb friction
force FC and a speed-dependent viscous friction force cv · v.

The figure below shows the speed/force characteristic and the state chart of
the component. Note that the friction force is opposed to the movement, hence
the negative sign.

Sticking

Sliding
backward

Sliding
forward

F > Fbrk F < -Fbrk

v > 0 v < 0

Fbrk

v

-F

FC
cv⋅v

Parameters Breakaway friction force
The maximum magnitude of the stiction force Fbrk, in Newton. Must be
greater than or equal to zero.

Coulomb friction force
The magnitude of the (constant) Coulomb friction force FC, in Newton.
Must be greater than or equal to zero and less than or equal to the break-
away friction force.

Viscous friction coefficient
The proportionality coefficient cv that determines the speed dependent vis-
cous friction force, in Ns

m .

668

Translational Friction

Probe Signals Force
The transmitted force F flowing from the unmarked to the marked flange,
in Newton (N).

Speed
The speed v of the marked flange with respect to the unmarked flange, in
m
s .

State
The internal state of the component: -1 sliding backward, 0 stuck, +1 slid-
ing forward.

669

14 Component Reference

Translational Hard Stop

Purpose Ideal translational hard stop

Library Mechanical / Translational / Components

Description The Translational Hard Stop models an ideal one- or two-sided hard stop in
a translational system, which restricts the relative displacement of the two
flanges between an upper and lower limit. While the displacement is within
the limits, no force is transmitted. When the displacement hits either limit,
the displacement is clamped at the limit and the flanges become rigidly con-
nected until the transmitted force reverses.

The figure below shows the displacement/force characteristic and the state
chart of the component.

Inside
limits

Lower
limit

Upper
limit

x < xmin

x := xmin x := xmax

x > xmax

F < 0 F > 0

F := 0
xmin xmax x

F

Parameters Upper limit
The maximum displacement xmax between the flanges, in meters. Set to
inf to disable this limit.

Lower limit
The minimum displacement xmin between the flanges, in meters. Set to
-inf to disable this limit.

Initial displacement
The initial displacement of the flanges, in meters.

Probe Signals Force
The transmitted force F flowing from the unmarked to the marked flange,
in Newton (N).

670

Translational Hard Stop

Displacement
The displacement x of the marked flange with respect to the unmarked
flange, in meters (m).

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1
in upper limit.

671

14 Component Reference

Translational Model Settings

Purpose Configure settings for an individual mechanical model.

Library Mechanical / Translational / Model Settings

Description The Translational Model Settings block lets you configure parameter settings
that influence the code generation for a particular mechanical system, see also
“Code Generation for Physical Systems” (on page 257).

The block affects the mechanical system that it is attached to by its transla-
tional terminal. At most one Model Settings block may be attached to an in-
dividual state-space system. A mechanical model can be split into multiple
state-space systems if the underlying model equations are fully decoupled.
Note that a rotational system and a translational system that are coupled e.g.
with a Rack and Pinion (see page 535) have coupled model equations. See also
the options Enable state-space splitting and Display state-space split-
ting in the “Simulation Parameters” (on page 103).

Parameters Switching algorithm
This parameter allows you two choose between two algorithms to deter-
mine the clutch states in the generated code. See “Switching Algorithm”
(on page 259) for details.

Matrix coding style
This setting allows you to specify the format used for storing the state-
space matrices for a physical model. When set to sparse, only the non-
zero matrix entries and their row and column indices are stored. When
set to full, matrices are stored as full m × n arrays. When set to full
(inlined), the matrices are additionally embedded in helper functions,
which may enable the compiler to further optimize the matrix-vector-
multiplications at the cost of increased code size.

Topologies
This parameter lets you specify a matrix containing the combinations of
clutch states, for which code should be generated, see also “Reducing the
Code Size” (on page 258). The columns represent the clutch elements of
the physical model and each row represents one combination of clutch
states (zero for an open clutch and non-zero for a closed clutch).

The default is an empty matrix [], which means that all possible combina-
tions are included.

672

Translational Port

Translational Port

Purpose Add translational flange to subsystem

Library Mechanical / Translational / Components

Description Translational ports are used to establish translational mechanical connections
between a schematic and the subschematic of a subsystem (see page 603). If
you copy a Translational Port block into the schematic of a subsystem, a ter-
minal will be created on the subsystem block. The name of the port block will
appear as the terminal label. If you choose to hide the block name by unse-
lecting the show name option in the block menu, the terminal label will also
disappear.
Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by
using the middle mouse button.

Translational Ports in a Top-Level Schematic

In PLECS Blockset, if a Translational Port is placed in a top-level schematic,
the PLECS Circuit block in the Simulink model will show a corresponding
translational terminal, which may be connected with other translational ter-
minals of the same or a different PLECS Circuit block. The Translational Port
is also assigned a unique physical port number. Together with the parameter
Location on circuit block the port number determines the position of the
translational terminal of the PLECS Circuit block.
For compatibility reasons you can also place an Translational Port in a top-
level schematic in PLECS Standalone. However, since there is no parent sys-
tem to connect to, such a port will act like an isolated node.

Parameter Port number
If a Translational Port is placed in a top-level schematic in PLECS Block-
set, this parameter determines the position, at which the corresponding
terminal appears on the PLECS Circuit block.

Location on circuit block
If a Translational Port is placed in a top-level schematic in PLECS Block-
set, this parameter specifies the side of the PLECS Circuit block on which
the corresponding terminal appears. By convention, left refers to the side
on which also input terminals are shown, and right refers to the side on
which also output terminals are shown.

673

14 Component Reference

Translational Reference

Purpose Connect to common translational reference frame

Library Mechanical / Translational / Components

Description The Translational Reference implements a connection to the translational ref-
erence frame that has a fixed absolute position of zero.

674

Translational Speed (Constant)

Translational Speed (Constant)

Purpose Maintain constant translational speed

Library Mechanical / Translational / Sources

Description The Constant Translational Speed maintains a constant linear speed between
its two flanges regardless of the force required. The speed is considered posi-
tive at the flange marked with a “+”.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive a mass.

Parameters Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Speed
The magnitude of the speed, in m

s . The default value is 1.

Probe Signals Force
The generated force flowing from the unmarked flange to the marked
flange, in Newton (N).

Speed
The speed, in m

s .

675

14 Component Reference

Translational Speed (Controlled)

Purpose Maintain variable translational speed

Library Mechanical / Translational / Sources

Description The Controlled Translational Speed maintains a variable linear speed between
its two flanges regardless of the force required. The speed is considered posi-
tive at the flange marked with a “+”. The momentary speed is determined by
the signal fed into the input of the component.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive a mass.

Parameters Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input
variable from the state-space equations and substitute it with the corre-
sponding output variables. The default is off.

Probe Signals Force
The generated force flowing from the unmarked flange to the marked
flange, in Newton (N).

Speed
The speed, in m

s .

676

Translational Speed Sensor

Translational Speed Sensor

Purpose Output measured linear speed as signal

Library Mechanical / Translational / Sensors

Description The Translational Speed Sensor measures the linear speed of the flange
marked with a dot with respect to the other flange.

Note Speed and position sensors are ideally compliant. Hence, if multiple
speed or position sensors are connected in series the speed or position measured
by an individual sensor is undefined. This produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the trans-
lational reference frame.

Probe Signal Speed
The measured speed, in m

s .

677

14 Component Reference

Translational Spring

Purpose Ideal translational spring

Library Mechanical / Translational / Components

Description The Translational Spring models an ideal linear spring in a translational sys-
tem described with the following equations:

F = −c ·∆x
∆x = x− x0

d

dt
x = v

where F is the force flow from the unmarked towards the marked flange, x is
the displacement of the marked flange with respect to the unmarked one, and
x0 is the equilibrium displacement.

Note An translational spring may not be connected in series with a force
source. Doing so would create a dependency between an input variable (the
source force) and a state variable (the spring force) in the underlying state-
space equations.

Parameters Spring constant
The spring rate or stiffness c, in N

m .

Equilibrium (unstretched) displacement
The displacement x0 between the two flanges of the unloaded spring, in
meters.

Initial deformation
The initial deformation ∆x0 of the spring, in meters.

Probe Signals Force
The spring force F , in Newton (N).

Deformation
The spring deformation ∆x, in meters (m).

678

Transmission Line (3ph)

Transmission Line (3ph)

Purpose 3-phase transmission line

Library Electrical / Passive Components

Description This component implements a three-phase transmission line. A transmission
line is characterized by a uniform distribution of inductances, resistances and
neutral capacitances along the line. In multi-wire lines, there are also uni-
formly distributed mutual inductances and coupling capacitances.

The user has the choice between two different implementations: one with
series-connected pi sections of lumped elements and another one with dis-
tributed parameters based on traveling wave theory. A stiff solver is recom-
mended for simulating models containing this component.

Pi-Section Line

In many cases, the uniformly distributed parameters of a transmission line
can be approximated by a series of pi sections consisting of lumped inductors,
capacitors and resistors. The figure below illustrates a single pi section exem-
plified for a 2-phase line. Depending on the desired fidelity at higher frequen-
cies, the number of series-connected pi sections can be configured.

U in1

U in2

C N1

 mutual
inductance

U out2

U out1

2

C N2___
2

C 12___
2

C 12___
2

C N1___
2

C N2___
2

L 2R 2

L 1R 1

Let l be the length of the line and n the number of pi sections representing
the line. The inductance L, the resistance R, the neutral capacitance CN as
well as the coupling capacitances Cij and mutual inductances Lij of the dis-
crete elements can then be calculated from their per-unit-length counterparts
L′, R′, C ′N , C ′ij and L′ij using the following equations:

L =
l

n
L′, R =

l

n
R′, CN =

l

n
C ′N

679

14 Component Reference

Cij =
l

n
C ′ij , Lij =

l

n
L′ij

It is possible to specify the parameters for each phase individually in order
to model asymmetric lines. In this case, the parameters must be provided in
vector format. Otherwise, the parameter can be a scalar assigning the same
value to all phases.

Distributed Parameter Line

The implementation of a distributed parameter line is based on the traveling
wave theory, which describes the time delay phenomenon. This approach is
numerically more efficient due to the absence of numerous state variables and
should be used in large models.

Modeling asymmetric lines is not supported, therefore all parameters need to
be scalar.

Single-Phase Lossless Line

L'dx L'dx

C'dx C'dx

... ...
L'dx L'dx

C'dx C'dx

Consider a lossless transmission line with inductance L′ and capacitance C ′
per unit length. At a certain point x along the total length d, the relation be-
tween the line voltage and current can be described with partial differential
equations:

− ∂e
∂x

= L′ · ∂i
∂t

− ∂i
∂x

= C ′ · ∂e
∂t

Since a wave entering the sending end “s” of the line must remain unchanged
when it arrives at the receiving end “r” (and vice versa), the following expres-
sion is derived:

is =
1

Z
· es(t)− Ish

680

Transmission Line (3ph)

ir =
1

Z
· er(t)− Irh

where

Ish =
1

Z
· er(t− τ) + ir(t− τ)

Irh =
1

Z
· es(t− τ) + is(t− τ)

with surge impedance Z =
√

L′

C′ and travel time τ = d ·
√
L′C ′. This model can

be represented by a two-port equivalent circuit, where the electrical conditions
at port “s” are transferred after a time delay τ to port “r’ via the controlled
current source Irh.

i s i r

e s e rZ I sh I rh Z

+

-

+

-

Approximation of Series Resistance

i s R/4 length = 0.5*d length = 0.5*dR/2 R/4 i r

+

-

+

-

e re s

Since the shunt conductance is usually negligible, the series resistance is re-
sponsible for the major part of the power losses. Such series resistance can
be approximated by three lumped resistors, two of which with the value R

4

are placed at both ends of the line while one with the value R
2 is placed in the

681

14 Component Reference

middle. R = R′ · d is the total series resistance of the line. After aggregation
and substitution, the original expression of the two equivalent current source
becomes:

Ish =
1 + h

2
· (1

ZR
· er(t− τ) + h · ir(t− τ)) +

1− h
2

(
1

ZR
· es(t− τ) + h · is(t− τ))

Irh =
1 + h

2
· (1

ZR
· es(t− τ) + h · is(t− τ)) +

1− h
2

(
1

ZR
· er(t− τ) + h · ir(t− τ))

with ZR = Z + R
4 and h =

Z−R
4

Z+ R
4

.

Three-Phase Line

L M'dx

... ...

... ...

... ...

... ...

... ...

... ...

+

+

+

-

+

+

+

-

e s,a

e s,b

e s,c

e r,a

e r,b

e r,c

R'dx L S'dx

C K'dx

C E'dx

i s,a

i s,b

i s,c

i r,a

i r,b

i r,c

The differential equations of a 3-phase system with vector variables ~e =
[ea, eb, ec]

T , ~i = [ia, ib, ic]
T can be expressed as:

− ∂~e
∂x

= L′ · ∂
~i

∂t
+ R′ ·~i

− ∂
~i

∂x
= C′ · ∂~e

∂t

Under the assumption of symmetrical phase parameters, the per unit length
inductance, capacitance and resistance can be written in matrix form:

L′ =

L′S L′M L′M

L′M L′S L′M

L′M L′M L′S

682

Transmission Line (3ph)

C′ =

C ′E + 2 · C ′K −C ′K −C ′K
−C ′K C ′E + 2 · C ′K −C ′K
−C ′K −C ′K C ′E + 2 · C ′K

R′ =

R′ 0 0

0 R′ 0

0 0 R′

The presence of off-diagonal elements (mutual inductance and coupling capac-
itance) in the matrix make it difficult to solve the equation system. However,
this can be overcome with the help of modal transformations. If the differen-
tial equations are multiplied by a transformation matrix T on the left side

−(T · ∂~e
∂x

) = (T · L′ ·T−1) · (T · ∂
~i

∂t
) + (T ·R′ ·T−1) · (T ·~i)

−(T · ∂
~i

∂x
) = (T · L′ ·T−1) · (T · ∂~e

∂t
)

with

T =

1 1 1

1 −2 1

1 1 −2

the off-diagonal elements of the inductance, capacitance and resistance matrix
can be eliminated:

L′mod = T · L′ ·T−1 =

L′u 0 0

0 L′v 0

0 0 L′w

C′mod = T ·C′ ·T−1 =

C ′u 0 0

0 C ′v 0

0 0 C ′w

683

14 Component Reference

R′mod = T ·R′ ·T−1 =

R′ 0 0

0 R′ 0

0 0 R′

 = R′

Thus the original system, in which the three phases are coupled, has been
converted to three decoupled systems in the modal domain (denoted as u, v,
w). They can be treated separately in the same way as the single-phase sys-
tem.

The simulation output in the modal domain should be eventually transformed
back into the phase domain via the inverse of the matrix T′.

684

Transmission Line (3ph)

Parameters Self inductance per unit length
The series self inductance L′S per unit length. If the length l is specified in
meters (m) the unit of L′S is henries per meter (H/m).
For a pi-section line, the self inductance can be specified individually per
phase by providing a 3-element vector of the form L′ = [L′1 L′2 L′3].

Mutual inductance per unit length
The series mutual inductance L′M per unit length. If the length l is speci-
fied in meters (m) the unit of L′M is henries per meter (H/m).
In a pi-section line, the mutual inductances M ′ij between the i-th and j-th
phase can be specified individually by providing a 3-element vector M′ =
[M ′12 M ′13 M ′23] containing the upper triangular coupling matrix.

Resistance per unit length
The series resistance R′ per unit length. If the length l is specified in me-
ters (m) the unit of R′ is ohms per meter (Ω/m).
For a pi-section line, the parameter can be a vector of the form R′ =
[R′1 R′2 R′3].

Neutral capacitance per unit length
The line-to-neutral capacitance C ′N per unit length. If the length l is speci-
fied in meters (m) the unit of C ′N is farads per meter (F/m).
For a pi-section line, this parameter can be a vector of the form C ′N =
[C ′N1 C ′N2 C ′N1].

Coupling capacitance per unit length
The line-to-line capacitance C ′C per unit length. If the length l is specified
in meters (m) the unit of C ′C is farads per meter (F/m).
In a pi-section line, the coupling capacitance C ′ij between the i-th and j-th
phase can be specified individually by providing a 3-element vector C′ =
[C ′12 C ′13 C ′23] containing the upper triangular coupling matrix.

Length
The length l of the line. The unit of l must match the units L′S, L′M, R′, C ′N
and C ′C are based on.

Number of pi sections
Number of sections used to model the transmission line. The default is 3.
This parameter only affects the pi-section implementation.

Reference
H. Dommel: “Digital Computer Solution of Electromagnetic Transients in

Single and Multiple Networks”, IEEE Transactions on Power Apparatus
and Systems, Vol. PAS88, No. 4, April, 1969

685

14 Component Reference

Transport Delay

Purpose Delay continuous input signal by fixed time

Library Control / Delays

Description The Transport Delay outputs a signal that approximates a past value of the
input signal:

y(t) ≈ u(t− Td)

For this purpose, the Transport Delay continuously records the input signals
in an internal ring buffer. The output values are computed by looking up the
samples nearest to t − Td in the input buffer and performing a first order (lin-
ear) interpolation. The input signal can be a scalar or vector.

Note The Transport Delay should not be used to delay non-smooth signals
such as rectangular or triangular signals because the solver is not guaranteed
to make a simulation step at the precise instants required to accurately repro-
duce the discontinuities in the delayed signal.

• To generate phase-shifted rectangular or triangular signals, use the Pulse
Generator (see page 533) or the Triangular Wave Generator (see page 689)
and set the Phase delay parameter appropriately.

• To delay arbitrary signals that only change at discrete instants, use the Pulse
Delay (see page 531).

Parameters Time delay Td

Time by which the input signal is delayed.

Initial output
Output value after simulation start before the input values appear at the
output.

Initial buffer size
Size of the internal ring buffer at simulation start. The buffer size will be
increased during the simulation if required.

686

TRIAC

TRIAC

Purpose Ideal TRIAC with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The TRIAC can conduct current in both directions. It is built using two anti-
parallel thyristors (see page 639) and controlled by an external gate signal.
The TRIAC is modeled by two ideal switches that close if the voltage is pos-
itive and a non-zero gate signal is applied. The conducting switch remains
closed until the current passes through zero. A TRIAC cannot be switched off
via the gate.

Parameters The following parameters may either be scalars or vectors corresponding to
the implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) when one of the thyristors is conduct-
ing. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the TRIAC. The TRIAC is initially blocking if
the parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on
page 115). If no thermal description is given the losses are calculated
based on the voltage drop von = Vf +Ron · i.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capac-
itances are initialized based on a thermal “DC” analysis. If the parameter
is left blank, all temperatures are initialized from the external tempera-
ture. See also “Temperature Initialization” (on page 121).

Probe Signals TRIAC voltage
The voltage measured between the terminals.

687

14 Component Reference

TRIAC current
The current flowing through the device to the terminal with the gate.

TRIAC gate signal
The gate input signal of the device.

TRIAC conductivity
Conduction state of the internal switch. The signal outputs 0 when the
TRIAC is blocking, and 1 when it is conducting.

TRIAC junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer net-
work.

TRIAC conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

TRIAC switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

688

Triangular Wave Generator

Triangular Wave Generator

Purpose Generate periodic triangular or sawtooth waveform

Library Control / Sources

Description The Triangular Wave Generator produces a signal that periodically changes
between a minimum and a maximum value and vice versa in a linear way.

Parameters Minimum signal value
The minimum value of the signal.

Maximum signal value
The maximum value of the signal.

Frequency
The frequency of the signal in Hertz.

Duty cycle
The ratio of the rising edge to the period length. The value must be in the
range [0 1]. A value of 1 produces a sawtooth waveform with a perpen-
dicular falling edge. A value of 0 produces a reverse sawtooth waveform
with a perpendicular rising edge. A value of 0.5 produces a symmetrical
triangular wave.

Phase delay
The phase delay of the triangular wave in seconds. If the phase is set to 0,
the waveform begins at the rising edge.

Probe Signal Output
The block output signal.

689

14 Component Reference

Trigonometric Function

Purpose Apply specified trigonometric function

Library Control / Math

Description The Trigonometric Function calculates the specified function using the input
signal as argument. The atan2 function calculates the principal value of the
arc tangent of y/x. The quadrant of the return value is determined by the
signs of x and y. The y input is marked with a small black dot.

Parameters Function
Chooses which trigonometric function is calculated. Available functions are
sin, cos, tan, asin, acos, atan and atan2.

Unit
Specifies the unit of the input signal (for sin, cos and tan) or output sig-
nal (for asin, acos and atan). The unit can be radians [0 . . . 2π] or degress
[0 . . . 360].

Probe Signals Input
The block input signal.

Output
The block output signal.

690

Triple Switch

Triple Switch

Purpose Changeover switch with three positions

Library Electrical / Switches

Description This changeover switch provides an ideal short or open circuit. The switch po-
sition drawn in the icon applies if the input signal is zero. For values greater
than zero the switch is the lower position. For values less than zero it is in
the upper position.

Parameter Initial position
Initial position of the switch. The switch is initially in the middle position
if the parameter evaluates to zero. For values greater than zero it is in the
lower position, for values less than zero it is in the upper position. This
parameter may either be a scalar or a vector corresponding to the implicit
width of the component. The default value is 0.

Probe Signal Switch position
State of the internal switches. The signal outputs 0 if the switch is in the
middle position, 1 if it is in the lower position and -1 if it is in the upper
position.

691

14 Component Reference

Trigger

Purpose Control execution of an atomic subsystem

Library System

Description The Trigger block is used in an atomic subsystem (see “Virtual and Atomic
Subsystems” on page 603) to create a triggered subsystem. When you copy a
Trigger block into the schematic of a subsystem, a corresponding trigger ter-
minal will be created on the Subsystem block. In order to move this terminal
around the edges of the Subsystem block, hold down the Shift key while drag-
ging the terminal with the left mouse button or use the middle mouse button.

A triggered subsystem is executed when the trigger signal changes in the
manner specified by the Trigger type parameter:

rising
The subsystem is executed when the trigger signal changes from 0 to a
non-zero value.

falling
The subsystem is executed when the trigger signal changes from a non-
zero value to 0.

either
The subsystem is executed when the trigger signal changes from 0 to a
non-zero value or vice versa.

The trigger signal may be a vector signal. In this case the triggered subsystem
is executed when any trigger signal changes in the specified manner.

If the sample time of the Subsystem block is not inherited, the trigger signal
will be evaluated only at the instants specified by the sample time parameter.

Note A triggered subsystem can only contain components that have an in-
herited or constant sample time. In particular, it cannot contain any physical
components.

Parameters Width
The width of the trigger signal. The default auto means that the width is
inherited from connected blocks.

692

Trigger

Trigger type
The direction of the edges of the trigger signal upon which the subsystem
is executed, as described above.

Show output port
When this parameter is set to on, the Trigger block shows an output ter-
minal with the same width as the trigger signal. The output signal will be
1 when the trigger signal has a rising edge, -1 when the trigger signal has
a falling edge and 0 at all other times.

Probe Signal Output
The output signal of the Trigger block as described for the parameter
Show output port.

693

14 Component Reference

Turn-on Delay

Purpose Delay rising flank of input pulses by fixed dead time

Library Control / Delays

Description This block is used to delay the turn-on command for power semiconduc-
tors:

• When the input signal changes from 0 to non-zero, the output signal will be
set to 1 after the dead time has passed, provided that the input signal has
remained non-zero.

• When the input signal becomes 0, the output is immediately set to 0.

Parameter Dead time source
Specifies whether the dead time is determined by the Dear time parame-
ter (internal) or by an external input signal (external).

Dead time
Time by which the turn-on event is delayed. If set to 0, the delay is dis-
abled, i.e. the output is set to 1 immediately when the input signal be-
comes non-zero.

Dead time rounding (fixed-step)
If the dead time is determined by an external signal and the Turn-on De-
lay is used with a fixed-step solver, this parameter specifies how the dead
time is rounded to an integer multiple of the fixed-step size.

Probe Signals Input
The block input signal.

Output
The block output signal.

694

Variable Capacitor

Variable Capacitor

Purpose Capacitance controlled by signal

Library Electrical / Passive Components

Description This component models a variable capacitor. The capacitance is determined by
the signal fed into the input of the component. The current through a variable
capacitance is determined by the equation

i =
d

dt
C · v + C · d

dt
v

Since v is the state variable the equation above must be solved for dv
dt . The

control signal must provide the values of both C and d
dtC in the following

form:
[
C1 C2 . . . Cn

d
dtC1

d
dtC2 . . .

d
dtCn

]
. It is the responsibility of the user to

provide the appropriate signals for a particular purpose (see further below).

If the component has multiple phases you can choose to include the ca-
pacitive coupling of the phases. In this case the control signal vector
must contain the elements of the capacitance matrix (row by row) fol-
lowed by their derivatives with respect to time, e.g. for two coupled phases:[
C11 C12 C21 C22

d
dtC11

d
dtC12

d
dtC21

d
dtC22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note The momentary capacitance may not be set to zero. In case of coupled
capacitors, the capacitance matrix may not be singular.

There are two common use cases for variable capacitors, which are described
in detail below: saturable capacitors, in which the capacitance is a function of
the voltage and electrostatic actuators, in which the capacitance is a function
of an external quantity, such as a capacitor with movable plates.

Saturable Capacitor Modeling

When specifying the characteristic of a saturable capacitor, you need to distin-
guish carefully between the total capacitance Ctot(v) = Q/v and the differen-
tial capacitance Cdiff(v) = dQ/dv.

695

14 Component Reference

With the total capacitance Ctot(v) = Q/v you have

i =
dQ

dt

=
d

dt
(Ctot · v)

= Ctot ·
dv

dt
+

dCtot

dt
· v

= Ctot ·
dv

dt
+

dCtot

dv
· dv

dt
· v

=

(
Ctot +

dCtot

dv
· v
)
· dv

dt
,

which can be implemented as follows:

Ctot(v)

dCtot/dv *
*

++

0

V

With the differential capacitance Cdiff(v) = dQ/dv you have

i =
dQ

dt

=
dQ

dv
· dv

dt

= Cdiff ·
dv

dt
,

which can be implemented as follows:

Cdiff(v)

0

V

Note that in both cases the d
dtC-input of the Variable Capacitor is zero!

696

Variable Capacitor

Actuator Modeling

In an electrostatic actuator the capacitance is determined by an external
quantity such as the distance x between the movable plates of a capacitor:
C = C(x). Therefore you have

i = C · dv

dt
+

dC

dt
· v

= C · dv

dt
+

dC

dx
· dx

dt
· v ,

which can be implemented as follows:

dx/dt

1/s
C(x)

dC/dx
*
*

x

Note that x is preferably calculated as the integral of dx/dt rather than calcu-
lating dx/dt as the derivative of x.

Parameters Capacitive coupling
Specifies whether the phases should be coupled capacitively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the implicit
width of the component. The positive pole is marked with a “+”. The initial
voltage default is 0.

Probe Signals Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

Capacitor current
The current flowing through the capacitor, in amperes (A).

697

14 Component Reference

Variable Inductor

Purpose Inductance controlled by signal

Library Electrical / Passive Components

Description This component models a variable inductor. The inductance is determined by
the signal fed into the input of the component. The voltage across a variable
inductance is determined by the equation

v = L · di

dt
+

dL

dt
· i

Since i is the state variable the equation above must be solved for di
dt . The con-

trol signal must provide the values of both L and d
dtL in the following form:[

L1 L2 . . . Ln
d
dtL1

d
dtL2 . . .

d
dtLn

]
. It is the responsibility of the user to provide

the appropriate signals for a particular purpose (see further below).

If the component has multiple phases you can choose to include the in-
ductive coupling of the phases. In this case the control signal vector must
contain the elements of the inductivity matrix (row by row) followed
by their derivatives with respect to time, e.g. for two coupled phases:[
L11 L12 L21 L22

d
dtL11

d
dtL12

d
dtL21

d
dtL22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note The momentary inductance may not be set to zero. In case of coupled
inductors, the inductivity matrix may not be singular.

698

Variable Inductor

There are two common use cases for variable inductors, which are described
in detail below: saturable inductors, in which the inductance is a function of
the current and actuators, in which the inductance is a function of an external
quantity, such as a solenoid with a movable core.

For a more complex example of a variable inductor that depends on both the
inductor current and an external quantity see the Switched Reluctance Ma-
chine (on page 608).

Saturable Inductor Modeling

When specifying the characteristic of a saturable inductor, you need to distin-
guish carefully between the total inductivity Ltot(i) = Ψ/i and the differential
inductivity Ldiff(i) = dΨ/di. See also the piece-wise linear Saturable Inductor
(on page 564).

With the total inductivity Ltot(i) = Ψ/i you have

v =
dΨ

dt

=
d

dt
(Ltot · i)

= Ltot ·
di

dt
+
dLtot

dt
· i

= Ltot ·
di

dt
+
dLtot

di
· di

dt
· i

=

(
Ltot +

dLtot

di
· i
)
· di

dt
,

which can be implemented as follows:

A

Ltot(i)

dLtot/di *
*

++

0

With the differential inductivity Ldiff(i) = dΨ/di you have

699

14 Component Reference

v =
dΨ

dt

=
dΨ

di
· di

dt

= Ldiff ·
di

dt
,

which can be implemented as follows:

A

Ldiff(i)

0

Note that in both cases the d
dtL-input of the Variable Inductor is zero!

Actuator Modeling

In an actuator the inductivity is determined by an external quantity such as
the position x of the movable core in a solenoid: L = L(x). Therefore you have

v = L · di

dt
+

dL

dt
· i

= L · di

dt
+

dL

dx
· dx

dt
· i ,

which can be implemented as follows:

dx/dt

1/s
L(x)

dL/dx
*
*

x

Note that x is preferably calculated as the integral of dx/dt rather than calcu-
lating dx/dt as the derivative of x.

700

Variable Inductor

Parameters Inductive coupling
Specifies whether the phases should be coupled inductively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial current
The initial current through the inductor at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to the
implicit width of the component. The direction of a positive initial current
is indicated by a small arrow in the component symbol. The default of the
initial current is 0.

Probe Signals Inductor current
The current flowing through the inductor, in amperes (A). The direction of
a positive current is indicated with a small arrow in the component sym-
bol.

Inductor voltage
The voltage measured across the inductor, in volts (V).

701

14 Component Reference

Variable Magnetic Permeance

Purpose Variable permeance controlled by external signal

Library Magnetic

Description This component provides a magnetic flux path with a variable permeance. The
component is used to model non-linear magnetic material properties such as
saturation and hysteresis. The permeance is determined by the signal fed into
the input of the component. The flux-rate through a variable permeance P(t)
is governed by the equation:

Φ̇ =
d

dt
(P · F) = P · dF

dt
+

d

dt
P · F

Since F is the state variable the equation above must be solved for dF
dt . The

control signal must provide the values of P(t), d
dtP(t) and Φ as a vector. It is

the responsibility of the user to provide the appropriate signals.

Modeling non-linear material properties

When specifying the characteristic of a non-linear permeance, we need to dis-
tinguish carefully between the total permeance Ptot(F) = Φ/F and the differ-
ential permeance Pdiff(F) = dΦ/dF .

If the total permeance Ptot(F) is known the flux-rate Φ̇ through a time-
varying permeance is calculated as:

Φ̇ =
dΦ

dt

=
d

dt
(Ptot · F)

= Ptot ·
dF

dt
+

dPtot

dt
· F

= Ptot ·
dF

dt
+

dPtot

dF
· dF

dt
· F

=

(
Ptot +

dPtot

dF
· F
)
· dF

dt

In this case, the control signal for the variable permeance component is:

702

Variable Magnetic Permeance

P(t)

d
dtP(t)

Φ(t)

 =

Ptot + d

dF Ptot · F

0

Ptot · F

In most cases, however, the differential permeance Pdiff(F) is provided to char-
acterize magnetic saturation and hysteresis. With

Φ̇ =
dΦ

dt

=
dΦ

dF
· dF

dt

= Pdiff ·
dF

dt

the control signal is
P(t)

d
dtP(t)

Φ(t)

 =

Pdiff

0

Ptot · F

Parameter Initial MMF

Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked
terminal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

703

14 Component Reference

Variable Resistor

Purpose Resistance controlled by a signal

Library Electrical / Passive Components

Description This component provides an ideal resistor whose resistance is controlled by
the input signal.

Note The Variable Resistor creates an algebraic loop. See section “Block Sort-
ing” (on page 29) for more information on algebraic loops.

Probe Signals The small dot in the component icon marks the positive terminal.

Resistor voltage
The voltage measured across the resistor from the positive to the negative
terminal.

Resistor current
The current flowing into the positive terminal.

Resistor power
The power consumed by the resistor.

704

Variable Resistor with Constant Capacitor

Variable Resistor with Constant Capacitor

Purpose Controlled resistance in parallel with constant capacitance

Library Electrical / Passive Components

Description This component models a variable resistor with a constant capacitor connected
in parallel. The resistance is determined by the signal fed into the input of
the component. It may not be set to zero.

Note In this component the resistor is implemented as a voltage-dependent
current source. Without the parallel capacitor, which fixes the momentary volt-
age, this would result in an algebraic loop. Therefore, the capacitance may not
be set to zero.

Parameters Capacitance
The value of the capacitor, in farads (F). All finite positive and negative
values are accepted, excluding 0. The default is 100e-6.

In a vectorized component, all internal capacitors have the same value if
the parameter is a scalar. To specify the capacitances individually use a
vector [C1 C2 . . . Cn] . The length n of the vector determines the width of
the component.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the width of
the component. The positive pole is marked with a “+”. The initial voltage
default is 0.

Probe Signal Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

705

14 Component Reference

Variable Resistor with Constant Inductor

Purpose Controlled resistance in series with constant inductance

Library Electrical / Passive Components

Description This component models a variable resistor with a constant inductor connected
in series. The resistance is determined by the signal fed into the input of the
component.

Note In this component the resistor is implemented as a current-dependent
voltage source. Without the series inductor, which fixes the momentary current,
this would result in an algebraic loop. Therefore, the inductance may not be set
to zero.

Parameters Inductance
The inductance in henries (H). All finite positive and negative values are
accepted, excluding 0. The default is 1e-3.

In a vectorized component, all internal inductors have the same induc-
tance if the parameter is a scalar. To specify the inductances individually
use a vector [L1 L2 . . . Ln]. The length n of the vector determines the width
of the component.

Initial current
The initial current through the component at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to
the width of the component. The direction of a positive initial current is
indicated by a small arrow in the component symbol. The default of the
initial current is 0.

Probe Signal Inductor current
The current flowing through the inductor, in amperes (A). The direction of
a positive current is indicated with a small arrow in the component sym-
bol.

706

Variable Resistor with Variable Capacitor

Variable Resistor with Variable Capacitor

Purpose Controlled resistance in parallel with controlled capacitance

Library Electrical / Passive Components

Description This component models a variable resistor with a variable capacitor connected
in parallel. The resistance and capacitance are determined by the signals fed
into the inputs of the component. The current through this component is de-
termined by the equation

i =

(
1

R
+

d

dt
C

)
· v + C · d

dt
v

The control signal for the capacitor must provide the values of both C and d
dtC

in the following form:
[
C1 C2 . . . Cn

d
dtC1

d
dtC2 . . .

d
dtCn

]
. It is the responsibil-

ity of the user to provide the appropriate signals for a particular purpose. For
detailed information see the Variable Capacitor (on page 695).

If the component has multiple phases you can choose to include the ca-
pacitive coupling of the phases. In this case the control signal vector
must contain the elements of the capacitance matrix (row by row) fol-
lowed by their derivatives with respect to time, e.g. for two coupled phases:[
C11 C12 C21 C22

d
dtC11

d
dtC12

d
dtC21

d
dtC22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note The momentary capacitance and the resistance may not be set to zero.
In case of coupled capacitors, the capacitance matrix may not be singular.

Parameters Capacitive coupling
Specifies whether the phases should be coupled capacitively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the implicit
width of the component. The positive pole is marked with a “+”. The initial
voltage default is 0.

707

14 Component Reference

Probe Signal Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

708

Variable Resistor with Variable Inductor

Variable Resistor with Variable Inductor

Purpose Controlled resistance in series with controlled inductance

Library Electrical / Passive Components

Description This component models a variable resistor with a variable inductor connected
in series. The resistance and inductance are determined by the signals fed
into the inputs of the component. The voltage across this component is deter-
mined by the equation

v =

(
R+

d

dt
L

)
· i+ L · d

dt
i

The control signal for the inductor must provide the values of both L and d
dtL

in the following form:
[
L1 L2 . . . Ln

d
dtL1

d
dtL2 . . .

d
dtLn

]
. It is the responsibility

of the user to provide the appropriate signals for a particular purpose. For de-
tailed information see the Variable Inductor (on page 698).

If the component has multiple phases you can choose to include the in-
ductive coupling of the phases. In this case the control signal vector must
contain the elements of the inductivity matrix (row by row) followed
by their derivatives with respect to time, e.g. for two coupled phases:[
L11 L12 L21 L22

d
dtL11

d
dtL12

d
dtL21

d
dtL22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note

• The momentary inductance may not be set to zero. In case of coupled induc-
tors, the inductivity matrix may not be singular.

• The control signal for the momentary inductance values must be continuous.
Discontinuous changes will produce non-physical results.

Parameters Inductive coupling
Specifies whether the phases should be coupled inductively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial current
The initial current through the component at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to the

709

14 Component Reference

implicit width of the component. The direction of a positive initial current
is indicated by a small arrow in the component symbol. The default of the
initial current is 0.

Probe Signal Inductor current
The current flowing through the inductor, in amperes (A). The direction of
a positive current is indicated with a small arrow in the component sym-
bol.

710

Voltage Source (Controlled)

Voltage Source (Controlled)

Purpose Generate variable voltage

Library Electrical / Sources

Description The Controlled Voltage Source generates a variable voltage between its two
electrical terminals. The voltage is considered positive at the terminal marked
with a “+”. The momentary voltage is determined by the signal fed into the
input of the component.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameters Discretization behavior
Specifies whether a zero-order hold or a first-order hold is applied to the
input signal when the model is discretized. For details, see “Physical
Model Discretization” (on page 33).

The option Non-causal zero-order hold applies a zero-order hold with
the input signal value from the current simulation step instead of the pre-
vious one. This option can be used to compensate for a known delay of the
input signal.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of electrical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Source voltage
The source voltage in volts (V).

Source current
The current flowing through the source, in amperes (A).

Source power
The instantaneous output power of the source, in watts (W).

711

14 Component Reference

Voltage Source AC

Purpose Generate sinusoidal voltage

Library Electrical / Sources

Description The AC Voltage Source generates a sinusoidal voltage between its two electri-
cal terminals. The voltage is considered positive at the terminal marked with
a “+”. The momentary voltage v is determined by the equation

v = A · sin(ω · t+ ϕ)

where t is the simulation time.

If a variable-step solver is used, the solver step size is automatically limited to
ensure that a smooth voltage waveform is produced.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameters Each of the following parameters may either be a scalar or a vector corre-
sponding to the implicit width of the component:

Amplitude
The amplitude A of the voltage, in volts (V). The default is 1.

Frequency
The angular frequency ω, in s−1. The default is 2*pi*50 which corre-
sponds to 50 Hz.

Phase
The phase shift ϕ, in radians. The default is 0.

Probe Signals Source voltage
The source voltage in volts (V).

Source current
The current flowing through the source, in amperes (A).

Source power
The instantaneous output power of the source, in watts (W).

712

Voltage Source AC (3-Phase)

Voltage Source AC (3-Phase)

Purpose Generate 3-phase sinusoidal voltage

Library Electrical / Sources

Description The three phase Voltage Source generates three sinusoidal voltages between
its electrical terminals. The first phase is marked with a small black dot. The
momentary voltages vi are determined by the equation

vi = Ai · sin(2π · f · t+ ϕi + ∆ϕi)

where t is the simulation time and ϕ0 = 0, ϕ1 = −2/3 · π and ϕ2 = 2/3 · π.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameters Amplitude
The amplitude A of the voltage, in volts (V). The value can be given as a
scalar or as a vector with three elements [A0, A1, A2].

Frequency
The frequency f , in Hertz (Hz).

Phase offset
The phase offset ∆ϕ, in radians. The value can be given as a scalar or as a
vector with three elements [∆ϕ0,∆ϕ1,∆ϕ2].

Neutral point
Show or hide the neutral point terminal.

Probe Signals Source voltage
The source voltages in volts (V) as a vectorized signal.

Source current
The currents flowing through the source, in amperes (A) as a vectorized
signal.

Source power
The combined instantaneous output power of the source, in watts (W).

713

14 Component Reference

Voltage Source DC

Purpose Generate constant voltage

Library Electrical / Sources

Description The DC Voltage Source generates a constant voltage between its two electrical
terminals. The voltage is considered positive at the terminal marked with a
“+”.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameter Voltage
The magnitude of the constant voltage, in volts (V). This parameter may
either be a scalar or a vector defining the width of the component. The de-
fault value is 1.

Probe Signals Source voltage
The source voltage in volts (V).

Source current
The current flowing through the source, in amperes (A).

Source power
The instantaneous output power of the source, in watts (W).

714

Voltmeter

Voltmeter

Purpose Output measured voltage as signal

Library Electrical / Meters

Description

V

The Voltmeter measures the voltage between its two electrical terminals
and provides it as a signal at the output of the component. A positive volt-
age is measured when the potential at the terminal marked with a “+” is
greater than at the unmarked one. The output signal can be made accessible
in Simulink with an Output block (see page 583) or by dragging the compo-
nent into the dialog box of a Probe block.

Note The Voltmeter is ideal, i.e. it has an infinite internal resistance. Hence,
if multiple voltmeters are connected in series the voltage across an individual
voltmeter is undefined. This produces a run-time error.

Likewise, if switches connected in series are all in open position the voltages
across the individual switches are not properly defined. Although this does not
produce a run-time error it may lead to unexpected simulation results.

Probe Signal Measured voltage
The measured voltage in volts (V).

715

14 Component Reference

White Noise

Purpose Generate normally distributed random numbers

Library Control / Sources

Description The White Noise block generates normally distributed (Gaussian) random
numbers for modeling band-limited white noise. The mean and the standard
deviation of the underlying distribution can be configured in the component
dialog. The figure below illustrates the distribution for three different sets of
parameters. The seed of the generator initializes the algorithm at the simula-

x

\ (x)

ï4 ï2 0 2 4 6

0.8

 [µ, m2] = [0, 0.25]

[µ, m2] = [0, 1]

[µ, m2] = [1, 2]

tion start. For the same seed, the sequence of random numbers is reproduced
in every simulation run. If this behavior is undesired the system time can be
used as a seed. To minimize correlation effects, it is recommended to use dif-
ferent seeds if multiple random generators are used in one model.

Parameters Mean µ
The mean value of the distribution.

Standard deviation σ
The standard deviation of the distribution.

Seed
The seed used to initialize the White Noise generator.

Sample Time
The sampling period used for generating random output values.

716

White Noise

References
Mersenne Twister: http://en.wikipedia.org/wiki/Mersenne_twister

Leva, J. L., “A Fast Normal Random Number Generator", ACM Transactions
on Mathematical Software, vol. 18, no. 4, pp. 449-453, 1992.

717

http://en.wikipedia.org/wiki/Mersenne_twister

14 Component Reference

Winding

Purpose Ideal winding defining an electro-magnetic interface

Library Magnetic

Description The Winding forms the interface between the electrical and the magnetic do-
main. A winding of N turns is described with the equations:

v = N Φ̇

i =
F

N

where v and i are voltage and current at the electrical terminals. F is the
magneto-motive force (MMF) and Φ̇ is the rate-of-change of the magnetic flux
through the winding. The left-hand side of the equations above refers to the
electrical domain, the right-hand side to the magnetic domain.

The sign conventions used for the electrical and magnetic quantities are il-
lustrated in the figure below for the two polarities of the winding. Notice the
positions of the black dot and the brown arrow in the winding symbol.

+

-

+

-

-

+

+

-

v

i

i

vF F

ΦΦ

Parameters Number of turns
Specifies the number of winding turns.

Polarity
Specifies the polarity of the winding. Choosing a negative polarity is equiv-
alent to specifying a negative number of turns.

Probe Signals Winding voltage
The voltage measured from the positive (marked) to the negative electrical
terminal of the winding, in volts (V).

Winding current
The current flowing through the winding, in amperes (A). A current enter-
ing the winding at the marked terminal is counted as positive.

718

Winding

MMF
The magneto-motive force measured from the marked to the unmarked
magnetic terminal, in ampere-turns (A).

719

14 Component Reference

Wire Multiplexer

Purpose Bundle several wires into bus

Library System

Description This multiplexer combines several individual wires into a wire bus. The indi-
vidual wires may themselves be buses. In the block icon, the first individual
wire is marked with a dot.

Parameter Width
This parameter allows you to specify the number and/or width of the indi-
vidual wires. You can choose between the following formats for this param-
eter:

Scalar: A scalar specifies the number of individual wires each having a
width of 1.

Vector: The length of the vector determines the number of individual
wires. Each element specifies the width of the corresponding individual
wire.

720

Wire Selector

Wire Selector

Purpose Select or reorder elements from wire bus

Library System

Description The Wire Selector block connects the individual elements of the output bus to
the specified elements of the input bus. The input bus is marked with a dot.

Parameters Input width
The width of the input bus.

Output indices
A vector with the indices of the input elements that the output bus should
contain.

721

14 Component Reference

XY Plot

Purpose Display correlation between two signals

Library System

Description The XY Plot displays the relationship between two signals. It can be used in
PLECS circuits as well as in Simulink models. For detailed information on
how to work with the XY Plot see section “Using the XY Plot” (on page 101).

Parameters Title
The name which is displayed above the plot.

Sample time
The block sample time used to sample the input signals. The default is -1
(inherited). Other valid settings are 0 (continuous) or a valid fixed-step
discrete sample time pair (see “Sample Times” on page 36).

Limit samples
If this option is selected, the XY Plot will only save the last n sample val-
ues during a simulation. It can be used in long simulations to limit the
amount of memory that is used by PLECS. If the option is unchecked all
sample values are stored in memory.

Time range
This option may be used for periodic systems to limit the displayed data to
a given number of periods.

The time range value determines the time range that is displayed in the
plot. If set to auto, the data over the whole simulation time range is used.
If a limit is given and the simulation time reaches an integer multiple of
this limit the plot is cleared except for the data covering the last n time
ranges, where n is the number entered under Show last. The plot is ap-
pended until the simulation time reaches the next integer multiple of the
time range.

Plot style
This option lets you choose whether you would like to plot trajectories, vec-
tors or a combination of both. If vectors are drawn, the aspect ratio (see
below) is automatically fixed to 1:1.

722

XY Plot

Keep aspect ratio (x:y)
If this option is selected, the aspect ratio of the axes is kept constant. A
ratio of x : y ensures that the length of x units on the x-axis matches the
length of y units on the y-axis.

Axis labels
The axis labels that are displayed on the x- and y-axis.

X- and Y-limits
The initial lower and upper bound of the x- and y-axis. If set to auto, the
axes are automatically scaled such that all data is visible. Note that set-
ting any of the limits to auto is computationally expensive and may have
a considerable impact on the simulation speed.

723

14 Component Reference

Zener Diode

Purpose Zener diode with controlled reverse breakdown voltage

Library Electrical / Power Semiconductors

Description The Zener diode is a type of diode that permits current to flow in forward di-
rection like a normal diode (see page 361), but also in reverse direction if the
voltage is larger than the rated breakdown or Zener voltage. Zener diodes are
widely used to regulate the voltage across a circuit.

Parameters Zener voltage
Breakdown voltage Vz in reverse direction, in volts (V). If the diode is re-
verse conducting the voltage drop across the diode is determined by this
Zener voltage plus the voltage across the Zener resistance.

Zener resistance
The resistance Rz, in ohms (Ω), if the diode is reverse conducting.

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
diode is forward conducting. The default is 0.

On-resistance
The resistance Rf of the forward conducting device, in ohms (Ω). The de-
fault is 0.

Probe Signals Diode voltage
The voltage measured between anode and cathode.

Diode current
The current through the diode flowing from anode to cathode.

Forward conductivity
Conduction state of the positive internal switch. The signal outputs 1
when the diode is conducting in forward direction, and 0 otherwise.

Reverse conductivity
Conduction state of the negative internal switch. The signal outputs 1
when the diode is conducting in reverse direction, and 0 otherwise.

724

Zero Order Hold

Zero Order Hold

Purpose Sample and hold input signal periodically

Library Control / Discrete

Description The Zero Order Hold samples the input signal and holds this value at its out-
put for a specified sample time.

Parameter Sample time
The length of the hold time in seconds. See also the Discrete-Periodic
sample time type in section “Sample Times” (on page 36).

Probe Signals Input
The input signal.

Output
The output signal.

725

14 Component Reference

726

15

Additional Simulink Blocks

This chapter lists the contents of the PLECS Extras library for PLECS Block-
set in alphabetical order.

15 Additional Simulink Blocks

AC Sweep

Purpose Perform AC sweep

Library PLECS Extras / Analysis Tools

Description The AC Sweep block enables you to determine the transfer function of a
generic system from a single input to one or more outputs. The analysis is
performed by injecting a small sinusoidal signal at different frequencies into
the system and extracting the same frequencies from the system output(s) by
Fourier analysis. The perturbation signal is available at the block output. The
system outputs to be analyzed must be fed into the block’s input port.

An ac sweep can be started either by clicking the button Start analysis or
with the MATLAB command

placsweep(block);

where block is the Simulink handle or the full block path of the AC Sweep
block. The block handle or path can be followed by parameter/value pairs that
override the settings in the dialog box.

For additional information see section “AC Analysis” (on page 164).

Parameters System period length
The period length of the unperturbed system.

Simulation start time
The simulation start time for the ac sweep.

Frequency sweep range
A vector containing the lowest and highest perturbation frequency.

Frequency sweep scale
Specifies whether the sweep frequencies should be distributed on a linear
or logarithmic scale.

Number of points
The number of data points generated.

Amplitude at first freq
The amplitude of the perturbation signal at the lowest frequency. The am-
plitudes at the other frequencies are calculated as

Ai = A1 ·
√
fi/f1

728

AC Sweep

Show reference input
If this parameter is set to on, the block will show an additional input port,
and the signal that is connected to it is used to determine the spectrum
U(s) for the calculation of the transfer function G(s) = Y (s)/U(s). Other-
wise, U(s) is determined by the internally generated perturbation signal.

Method
Specifies the method to use for obtaining the steady-state operating point
of the system for each perturbation frequency.

Brute force simulation simply simulates the system on a cycle-by-cycle
basis until the difference between the state variables at the beginning and
end of a cycle become sufficiently small. With this setting the parameter
Max number of iterations actually limits the number of cycles until a
steady state is reached.

Steady-state analysis performs a steady-state analysis for each pertur-
bation frequency.

Start from model initial state uses the initial state values specified
in the model – either in the individual blocks or in the simulation parame-
ters.

Start from unperturbed steady state performs a steady-state analysis
of the unperturbed system to determine the initial state vector for the ac
sweep.

Termination tolerance
The relative error bound for all state variables. The analysis continues un-
til
|x(t0)− x(t0 + T)|

max |x|
≤ rtol

for each state variable.

Max number of iterations
The maximum number of iterations allowed.

Output variable
The name of a MATLAB variable used to store the transfer function at the
end of an analysis. If the analysis was run interactively from the GUI, the
variable is assigned in the MATLAB base workspace. If the analysis was
run with the placsweep command, the variable is assigned in the caller’s
workspace.

Plot bode diagram
Specifies whether to plot the transfer function in a bode diagram.

729

15 Additional Simulink Blocks

Display level
Specifies the level of detail of the diagnostic messages displayed in the
command window (iteration, final, off).

Hidden model states
Specifies how to handle Simulink blocks with ’hidden’ states, i.e. states
that are not stored in the state vector (error, warning, none).

730

Discrete Analysis

Discrete Analysis

Please refer to the documentation on the following components:

• Discrete Fourier Transform (see page 367)
• Discrete Mean Value (see page 372)
• Discrete RMS Value (see page 373)
• Discrete Total Harmonic Distortion (see page 375)

731

15 Additional Simulink Blocks

Impulse Response Analysis

Purpose Perform impulse response analysis

Library PLECS Extras / Analysis Tools

Description The Impulse Response Analysis block enables you to determine the transfer
function of a generic system from a single input to one or more outputs. The
analysis is performed by injecting a small rectangular pulse into the system
and computing the inverse Laplace transform of the system response(s). The
perturbation signal is available at the block output. The system outputs to be
analyzed must be fed into the block’s input port.

An analysis can be started either by clicking the button Start analysis or
with the MATLAB command

plimpulseresponse(block);

where block is the Simulink handle or the full block path of the Impulse Re-
sponse Analysis block. The block handle or path can be followed by parame-
ter/value pairs that override the settings in the dialog box.

For additional information see section “Impulse Response Analysis” (on page
164).

Parameters System period length
The period length of the unperturbed system.

Simulation start time
The simulation start time for the impulse response analysis.

Frequency sweep range
A vector containing the lowest and highest perturbation frequency.

Frequency sweep scale
Specifies whether the sweep frequencies should be distributed on a linear
or logarithmic scale.

Number of points
The number of data points generated.

Perturbation
The amplitude of the perturbation signal.

732

Impulse Response Analysis

Compensation for discrete pulse
Specifies whether and how the effect of the sampling should be compen-
sated. See section “Compensation for Discrete Pulse” (on page 165) for an
explanation of the parameter values.

Termination tolerance
The relative error bound used in the initial steady-state analysis.

Max number of iterations
The maximum number of iterations allowed during the initial steady-state
analysis.

Output variable
The name of a MATLAB variable used to store the transfer function at the
end of an analysis. If the analysis was run interactively from the GUI, the
variable is assigned in the MATLAB base workspace. If the analysis was
run with the placsweep command, the variable is assigned in the caller’s
workspace.

Plot bode diagram
Specifies whether to plot the transfer function in a bode diagram.

Display level
Specifies the level of detail of the diagnostic messages displayed in the
command window (iteration, final, off).

Hidden model states
Specifies how to handle Simulink blocks with ’hidden’ states, i.e. states
that are not stored in the state vector (error, warning, none).

733

15 Additional Simulink Blocks

Loop Gain Analysis (AC Sweep)

Purpose Determine loop gain of closed control loop

Library PLECS Extras / Analysis Tools

Description The Loop Gain Analysis block enables you to determine the gain of a closed
control loop. To measure the loop gain, insert the block anywhere in the con-
trol loop. The loop gain is determined by adding a small sinusoidal signal at
various frequencies and extracting the same frequencies from the system be-
fore and after the summation point by Fourier analysis.

An analysis can be started either by clicking the button Start analysis or
with the MATLAB command

placsweep(block);

where block is the Simulink handle or the full block path of the Loop Gain
Analysis block. Otherwise, the block remains inactive and does not influence
the control loop.

For additional information see section “AC Analysis” (on page 164).

Note The Loop Gain Analysis block works only on scalar signals. In order to
analyze the gain of a vectorized control loop you need to demultiplex the vector
signal into individual scalar signals before inserting the Loop Gain Analysis
block.

Parameters The parameters are identical to those of the AC Sweep block (see page 728).

734

Loop Gain Analysis (Multitone)

Loop Gain Analysis (Multitone)

Purpose Determine loop gain of closed control loop

Library PLECS Extras / Analysis Tools

Description The Loop Gain Analysis block enables you to determine the gain of a closed
control loop. To measure the loop gain, insert the block anywhere in the con-
trol loop. The loop gain is determined by adding a small sinusoidal signal at
various frequencies and extracting the same frequencies from the system be-
fore and after the summation point by Fourier analysis.

An analysis can be started either by clicking the button Start analysis or
with the MATLAB command

plmultitone(block);

where block is the Simulink handle or the full block path of the Loop Gain
Analysis block. Otherwise, the block remains inactive and does not influence
the control loop.

For additional information see section “Multitone Analysis” (on page 166).

Note The Loop Gain Analysis block works only on scalar signals. In order to
analyze the gain of a vectorized control loop you need to demultiplex the vector
signal into individual scalar signals before inserting the Loop Gain Analysis
block.

Parameters The parameters are identical to those of the Multitone Analysis block (see
page 737).

735

15 Additional Simulink Blocks

Modulators

Please refer to the documentation on the following components:

• 2-Pulse Generator (see page 309)
• 3-Phase Overmodulation (see page 312)
• 6-Pulse Generator (see page 313)
• Blanking Time (see page 327)
• Blanking Time (3-Level) (see page 328)
• Sawtooth PWM (see page 569)
• Sawtooth PWM (3-Level) (see page 571)
• Symmetrical PWM (see page 612)
• Symmetrical PWM (3-Level) (see page 614)
• Peak Current Controller (see page 515)

736

Multitone Analysis

Multitone Analysis

Purpose Perform a multitone analysis

Library PLECS Extras / Analysis Tools

Description The Multitone Analysis block enables you to determine the transfer function
of a generic system from a single input to one or more outputs. The analysis is
performed by injecting a small multitone signal containing different frequen-
cies into the system and extracting the same frequencies from the system out-
put(s) by Fourier analysis. The perturbation signal is available at the block
output. The system outputs to be analyzed must be fed into the block’s input
port.

A multitone analysis can be started either by clicking the button Start analy-
sis or with the MATLAB command

plmultitone(block);

where block is the Simulink handle or the full block path of the Multitone
Analysis block. The block handle or path can be followed by parameter/value
pairs that override the settings in the dialog box.

For additional information see section “Multitone Analysis” (on page 166).

Parameters Frequency range
A vector containing the lowest and highest perturbation frequency.

Amplitude
The amplitude of the perturbation signal.

Show reference input
If this parameter is set to on, the block will show an additional input port,
and the signal that is connected to it is used to determine the spectrum
U(s) for the calculation of the transfer function G(s) = Y (s)/U(s). Other-
wise, U(s) is determined by the internally generated perturbation signal.

Init. simulation period
The duration of an initial simulation performed before the response is
measured. It is assumed that during this period, the system reaches its
steady state. The total simulation duration will be the sum of this parame-
ter and one period of the base frequency signal.

737

15 Additional Simulink Blocks

Output variable
The name of a MATLAB variable used to store the transfer function at the
end of an analysis. If the analysis was run interactively from the GUI,
the variable is assigned in the MATLAB base workspace. If the analysis
was run with the plmultitone command, the variable is assigned in the
caller’s workspace.

Plot bode diagram
Specifies whether to plot the transfer function in a bode diagram.

Display level
Specifies the level of detail of the diagnostic messages displayed in the
command window (iteration, final, off).

738

Steady-State Analysis

Steady-State Analysis

Purpose Determine periodic steady-state operating point

Library PLECS Extras / Analysis Tools

Description The Steady-State Analysis block enables you to determine the steady-state
operating point of a generic periodic system. Copy this block anywhere into
the model that you want to analyze.

A steady-state analysis can be started either by clicking the button Start
analysis or with the MATLAB command

plsteadystate(block);

where block is the Simulink handle or the full block path of the Steady-State
Analysis block. The block handle or path can be followed by parameter/value
pairs that override the settings in the dialog box.

For additional information see section “Steady-State Analysis” (on page 161).

Parameters System period
Specifies whether the system period is fixed, i.e. predetermined and con-
stant, or variable (e.g. in case of a hysteresis type controller). If variable
is selected, a trigger input will be drawn which is used to determine the
end of a period.

Trigger type
Specifies which trigger event on the input signal (rising, falling) marks
the end of a variable system period.

System period length/Max simulation time span
For a fixed system period, the period length; for a variable system period,
the maximum time span during which to look for a trigger event marking
the end of a period.

Simulation start time
The simulation start time for the steady-state analysis.

Termination tolerance
The relative error bound. The analysis continues until both the maximum
relative error in the state variables and the maximum relative change
from one iteration to the next are smaller than this bound for each state
variable.

739

15 Additional Simulink Blocks

Max number of iterations
The maximum number of iterations allowed.

Steady-state variable
The name of a MATLAB variable used to store the periodic steady-state
vector at the end of an analysis. If the analysis was run interactively from
the GUI, the variable is assigned in the MATLAB base workspace. If the
analysis was run with the plsteadystate command, the variable is as-
signed in the caller’s workspace.

Show steady-state cycles
The number of cycles shown in the Simulink scopes at the end of an analy-
sis.

Display level
Specifies the level of detail (iteration, final, off) of the diagnostic mes-
sages displayed in the command window.

Hidden model states
Specifies how to handle Simulink blocks with ’hidden’ states, i.e. states
that are not stored in the state vector (error, warning, none).

740

Timer

Timer

Purpose Generate piece-wise constant signal

Library PLECS Extras / Control Blocks

Description The Timer block generates a signal that changes at discrete instants and
is otherwise constant. You can use the Timer block e.g. in order to control
switches such as circuit breakers.

Parameters Time values
A vector containing the transition times. This vector must have the same
length as the vector of output values. Before the first transition time the
output is zero.

Output values
A vector containing the output values corresponding to the transition
times. This vector must have the same length as the vector of time values.

741

15 Additional Simulink Blocks

Transformations

Please refer to the documentation on the following components:

• Transformation 3ph->RRF (see page 651)
• Transformation 3ph->SRF (see page 652)
• Transformation RRF->3ph (see page 653)
• Transformation RRF->SRF (see page 654)
• Transformation SRF->3ph (see page 655)
• Transformation SRF->RRF (see page 656)

742

electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com

User Manual Version 3.4

The siMUlaTion plaTforM for
power elecTronic sysTeMs

p
lec

s U
ser M

anual Version 3.4

	Contents
	Before You Begin
	Installing PLECS Blockset
	Installation on Microsoft Windows
	Installation on macOS
	Installation on Linux
	Licensing
	Configuring the MATLAB Search Path
	Configuring PLECS
	Installing Different Versions of PLECS Blockset in Parallel
	Uninstalling PLECS Blockset

	Installing PLECS Standalone
	Installation on Microsoft Windows
	Installation on macOS
	Installation on Linux
	Licensing

	License File Location
	Network Licensing
	What's New in Version 4.3
	Major New Features
	Further Enhancements

	Getting Started
	Getting Started with PLECS Blockset
	A Simple Passive Network
	Buck Converter

	Getting Started with PLECS Standalone
	A Simple Passive Network
	Buck Converter

	How PLECS Works
	Modeling Dynamic Systems
	System Equations
	Block Diagrams
	Physical Models

	Simulating Dynamic Systems
	Model Initialization
	Model Execution
	Fixed-Step Simulation

	Sampled Data Systems
	Sample Times
	Sample Time Inheritance
	Multirate Systems
	Troubleshooting

	Using PLECS
	Configuring PLECS
	General
	Libraries
	Thermal
	Scope Colors
	Update
	Coder

	Installing Extensions
	Creating a New Circuit with PLECS Blockset
	Customizing the Circuit Block

	Using the Library Browser
	Components
	Specifying Component Parameters
	Displaying Parameters in the Schematic
	Changing Parameters of Multiple Components
	Changing Parameters During a Simulation
	Changing Component Names
	Changing the Orientation of Components
	Getting Component Help

	Libraries
	Creating a New Library in PLECS Blockset
	Creating a New Library in PLECS Standalone
	Creating a Library Reference
	Updating a Library Reference
	Breaking a Library Reference

	Connections
	Signal Connections and Physical Connections
	Creating Connections
	Creating Branches
	Automatic Creation of Connections
	Editing Connections

	Annotations
	Subsystems
	Creating a Subsystem by Adding the Subsystem Block
	Creating a Subsystem by Grouping Existing Blocks
	Arranging Subsystem Terminals
	Resizing a Subsystem Block
	Placing the Subsystem Label

	Masking Subsystems
	Mask Icon
	Mask Dialog
	Mask Workspace
	Mask Probe Signals
	Mask Documentation
	Unprotecting Masked Subsystems
	Getting Started with Lua

	Circuit Browser
	Viewing Options

	PLECS Probe
	Copying a Probe

	Assertions
	Assertion Blocks
	Component Assertions
	Locating Assertions

	Controlling Access to Circuits and Subsystems
	Encrypting Circuits and Subsystems

	Exporting Circuits for the PLECS Viewer
	Exporting Schematics
	Using the PLECS Scope
	Getting Started
	Zoom Operations
	Scrolling
	Y-Axis Auto-Scaling
	Changing Curve Properties
	Spreading Signals
	Cursors
	Fourier Analysis
	Saving a View
	Adding Traces
	Saving and Loading Trace Data
	Scope Parameters
	Printing and Exporting

	Using the Fourier Analysis
	Calculation Parameters
	Display Parameters
	Zoom, Export and Print
	Calculation of the Fourier coefficients

	Using the XY Plot
	Time Range Window
	Zoom, Save View, Export and Print

	Simulation Parameters
	PLECS Blockset Parameters
	PLECS Standalone Parameters

	Thermal Modeling
	Heat Sink Concept
	Implementation

	Thermal Loss Dissipation
	Semiconductor Losses
	Ohmic Losses

	Heat Sinks and Subsystems
	Temperature Initialization
	Thermal Description Parameter
	Assigning Thermal Data Sheets
	Using Reference Variables

	Thermal Library
	Library Structure
	Global and Local Data Sheets
	Creating New Data Sheets
	Browsing the Thermal Library

	Thermal Editor
	Editing Switching Losses
	Editing Conduction Losses
	Editing the Thermal Equivalent Circuit
	Adding Custom Variables
	Adding Custom Lookup Tables
	Editing Lookup Tables
	Importing Data from Graphical Datasheets

	Semiconductor Loss Specification
	Single Semiconductor Switch Losses
	Diode Losses
	Losses of Semiconductor Switch with Diode

	Magnetic Modeling
	Equivalent circuits for magnetic components
	Coupled inductors
	Reluctance-resistance analogy
	Permeance-capacitance analogy

	Magnetic Circuit Domain in PLECS
	Modeling Non-Linear Magnetic Material
	Saturation Curves for Soft-Magnetic Material

	Mechanical Modeling
	Flanges and Connections
	Force/Torque Flows and Sign Conventions
	Positions and Angles
	Initial Conditions
	Angle Wrapping

	Ideal Clutches
	Inelastic Collisions

	Analysis Tools
	Steady-State Analysis
	Algorithm
	Fast Jacobian Calculation for Thermal States
	Non-periodic Case
	Limitations
	Reference

	AC Analysis
	Impulse Response Analysis
	Algorithm
	Compensation for Discrete Pulse
	Reference

	Multitone Analysis
	Algorithm
	Remarks
	References

	Usage in PLECS Standalone
	Steady-State Analysis
	AC Sweep
	Impulse Response Analysis
	Multitone Analysis
	Extraction of State-Space Matrices
	Application Example

	Usage in PLECS Blockset
	Steady-State Analysis
	AC Sweep / Loop Gain Analysis
	Impulse Response Analysis
	Multitone / Loop Gain Analysis
	Extraction of State-Space Matrices
	Application Example

	C-Scripts
	How C-Scripts Work
	C-Script Functions
	Modeling Discontinuities
	Sample Time
	User Parameters
	Runtime Checks

	C-Script Examples
	A Simple Function – Times Two
	Discrete States – Sampled Delay
	Continuous States – Integrator
	Event Handling – Wrapping Integrator
	Piecewise Smooth Functions – Saturation
	Multiple Sample Times – Turn-on Delay

	C-Script Macros
	Deprecated Macros

	State Machines
	Working with State Machines
	Working with States
	Working with Transitions
	Working with Junctions
	Working with Annotations
	State Machine Configuration

	State Machine Execution
	Transition Evaluation
	Trigger Types
	Trigger Lifetime
	Execution of Hierarchical State Machines

	State Machine Examples
	Oven Control
	Constant On-Time Control

	Simulation Scripts
	Command Line Interface in PLECS Blockset
	Simulation Scripts in PLECS Standalone
	Overview of PLECS Scripting Extensions
	Example Script

	XML-RPC Interface in PLECS Standalone
	Establishing an XML-RPC Connection to PLECS
	Overview of XML-RPC Commands
	Example Script

	Scripted Simulation and Analysis Options

	Code Generation
	Code Generation for Physical Systems
	Reducing the Code Size
	Maximum Number of Switches
	Handling Naturally Commutated Devices

	Data Types
	Unsupported Components
	Code Generation with PLECS Standalone
	Generating Code
	Simulating a Subsystem in CodeGen Mode

	Code Generation with PLECS Blockset
	Standalone Code Generation
	Integration with Simulink Coder
	Simulink Coder Options
	Code Generation Targets
	Real-Time Target
	Rapid Simulation Target

	Processor-in-the-Loop
	Motivation
	How PIL Works
	PIL Modes
	Configuring PLECS for PIL
	Target Manager
	Communication Links

	PIL Block

	Components by Category
	System
	Assertions
	Control
	Sources
	Math
	Continuous
	Delays
	Discontinuous
	Discrete
	Filters
	Functions & Tables
	Logical
	Modulators
	Transformations
	State Machine
	Small Signal Analysis

	Electrical
	Sources
	Meters
	Passive Components
	Power Semiconductors
	Power Modules
	Switches
	Transformers
	Machines
	Converters
	Electronics
	Model Settings

	Thermal
	Magnetic
	Mechanical
	Translational
	Rotational

	Additional Simulink Blocks

	Component Reference
	1D Look-Up Table
	2D Look-Up Table
	2-Pulse Generator
	3D Look-Up Table
	3-Phase Overmodulation
	6-Pulse Generator
	Abs
	Algebraic Constraint
	Ambient Temperature
	Air Gap
	Ammeter
	Angle Sensor
	Assert Dynamic Lower Limit
	Assert Dynamic Range
	Assert Dynamic Upper Limit
	Assertion
	Assert Lower Limit
	Assert Range
	Assert Upper Limit
	Blanking Time
	Blanking Time (3-Level)
	Breaker
	Brushless DC Machine
	Brushless DC Machine (Simple)
	C-Script
	Capacitor
	Clock
	Combinatorial Logic
	Comparator
	Compare to Constant
	Configurable Subsystem
	Constant
	Constant Heat Flow
	Constant Temperature
	Controlled Heat Flow
	Controlled Temperature
	Current Source (Controlled)
	Current Source AC
	Current Source DC
	D Flip-flop
	Data Type
	DC Machine
	Dead Zone
	Delay
	Diode
	Diode with Reverse Recovery
	Diode Rectifier (3ph)
	Discrete Fourier Transform
	Discrete Integrator
	Discrete Mean Value
	Discrete RMS Value
	Discrete State Space
	Discrete Total Harmonic Distortion
	Discrete Transfer Function
	Display
	DLL
	Double Switch
	Edge Detection
	Electrical Algebraic Component
	Electrical Ground
	Electrical Label
	Electrical Model Settings
	Electrical Port
	Enable
	Flux Rate Meter
	Force (Constant)
	Force (Controlled)
	Force Sensor
	Fourier Series
	Function
	Gain
	Gear
	GTO
	GTO (Reverse Conducting)
	Heat Flow Meter
	Heat Sink
	Hit Crossing
	Hysteretic Core
	Ideal 3-Level Converter (3ph)
	Ideal Converter (3ph)
	Ideal Transformer
	IGBT
	IGBT 3-Level Converter (3ph)
	IGBT 3-Level Half Bridge (NPC)
	IGBT Chopper (High-Side Switch)
	IGBT Chopper (High-Side Switch with Reverse Diode)
	IGBT Chopper (Low-Side Switch)
	IGBT Chopper (Low-Side Switch with Reverse Diode)
	IGBT Converter (3ph)
	IGBT Full Bridges (Series Connected)
	IGBT Half Bridge
	IGBT Half Bridges (Low-/High-Side Connected)
	IGBT with Diode
	IGBT with Limited di/dt
	IGCT (Reverse Blocking)
	IGCT (Reverse Conducting)
	Induction Machine (Slip Ring)
	Induction Machine (Open Stator Windings)
	Induction Machine (Squirrel Cage)
	Induction Machine with Saturation
	Inductor
	Inertia
	Initial Condition
	Integrator
	JK Flip-flop
	Leakage Flux Path
	Linear Core
	Linear Transformer (2 Windings)
	Linear Transformer (3 Windings)
	Logical Operator
	Magnetic Permeance
	Magnetic Port
	Magnetic Resistance
	Manual Double Switch
	Manual Signal Switch
	Manual Switch
	Manual Triple Switch
	Mass
	Math Function
	Memory
	Meter (3-Phase)
	Minimum / Maximum
	MMF Meter
	MMF Source (Constant)
	MMF Source (Controlled)
	Monoflop
	MOSFET
	MOSFET Converter (3ph)
	MOSFET with Diode
	MOSFET with Limited di/dt
	Moving Average
	Mutual Inductor
	Mutual Inductance (2 Windings)
	Mutual Inductance (3 Windings)
	Non-Excited Synchronous Machine
	Offset
	Op-Amp
	Op-Amp with Limited Output
	Pause / Stop
	Peak Current Controller
	Periodic Average
	Periodic Impulse Average
	Permanent Magnet Synchronous Machine
	Pi-Section Line
	Piece-wise Linear Resistor
	Planetary Gear Set
	Polar to Rectangular
	Position Sensor
	Product
	Pulse Delay
	Pulse Generator
	Quantizer
	Rack and Pinion
	Ramp
	Random Numbers
	Rate Limiter
	Rectangular to Polar
	Relational Operator
	Relay
	Resistor
	Rotational Algebraic Component
	Rotational Backlash
	Rotational Clutch
	Rotational Damper
	Rotational Friction
	Rotational Hard Stop
	Rotational Model Settings
	Rotational Port
	Rotational Reference
	Rotational Speed (Constant)
	Rotational Speed (Controlled)
	Rotational Speed Sensor
	Rounding
	Saturable Capacitor
	Saturable Core
	Saturable Inductor
	Saturable Transformers
	Saturation
	Sawtooth PWM
	Sawtooth PWM (3-Level)
	Scope
	Set/Reset Switch
	Signal Demultiplexer
	Signal From
	Signal Goto
	Signal Inport
	Signal Multiplexer
	Signal Outport
	Signal Selector
	Signal Switch
	Signum
	Sine Wave
	Small Signal Gain
	Small Signal Perturbation
	Small Signal Response
	Space Vector PWM
	Space Vector PWM (3-Level)
	SR Flip-flop
	State Machine
	State Space
	Step
	Subsystem
	Sum
	Switch
	Switched Reluctance Machine
	Symmetrical PWM
	Symmetrical PWM (3-Level)
	Synchronous Machine (Round Rotor)
	Synchronous Machine (Salient Pole)
	Synchronous Reluctance Machine
	Thermal Capacitor
	Thermal Chain
	Thermal Ground
	Thermal Model Settings
	Thermal Port
	Thermal Resistor
	Thermometer
	Thyristor
	Thyristor Rectifier/Inverter
	Thyristor with Reverse Recovery
	To File
	Torque (Constant)
	Torque (Controlled)
	Torque Sensor
	Torsion Spring
	Transfer Function
	Transformation 3ph->RRF
	Transformation 3ph->SRF
	Transformation RRF->3ph
	Transformation RRF->SRF
	Transformation SRF->3ph
	Transformation SRF->RRF
	Transformers (3ph, 2 Windings)
	Transformers (3ph, 3 Windings)
	Translational Algebraic Component
	Translational Backlash
	Translational Clutch
	Translational Damper
	Translational Friction
	Translational Hard Stop
	Translational Model Settings
	Translational Port
	Translational Reference
	Translational Speed (Constant)
	Translational Speed (Controlled)
	Translational Speed Sensor
	Translational Spring
	Transmission Line (3ph)
	Transport Delay
	TRIAC
	Triangular Wave Generator
	Trigonometric Function
	Triple Switch
	Trigger
	Turn-on Delay
	Variable Capacitor
	Variable Inductor
	Variable Magnetic Permeance
	Variable Resistor
	Variable Resistor with Constant Capacitor
	Variable Resistor with Constant Inductor
	Variable Resistor with Variable Capacitor
	Variable Resistor with Variable Inductor
	Voltage Source (Controlled)
	Voltage Source AC
	Voltage Source AC (3-Phase)
	Voltage Source DC
	Voltmeter
	White Noise
	Winding
	Wire Multiplexer
	Wire Selector
	XY Plot
	Zener Diode
	Zero Order Hold

	Additional Simulink Blocks
	AC Sweep
	Discrete Analysis
	Impulse Response Analysis
	Loop Gain Analysis (AC Sweep)
	Loop Gain Analysis (Multitone)
	Modulators
	Multitone Analysis
	Steady-State Analysis
	Timer
	Transformations

